
Proceedings of the 4th International Conference of Control, Dynamic Systems, and Robotics (CDSR'17) 

Toronto, Canada – August 21 – 23, 2017 

Paper No. 133 

DOI: 10.11159/cdsr17.133 

133-1 

 

Cable-Pulley Interaction with Dynamic Wrap Angle Using the Absolute 
Nodal Coordinate Formulation 

 

Cassidy Westin, Rishad A. Irani 
Carleton University 

Ottawa, Canada 

cassidy.westin@carleton.ca; rishad.irani@carleton.ca 

 

 
Abstract - This paper presents a finite element model of a flexible cable that has been constructed to accurately model dynamic wrap 

angles around a static pulley. The study considers a system with a rope running over a pulley and a suspended load on one end moving 

in a circular arc. The model utilizes the Absolute Nodal Coordinate Formulation to define the generalized coordinates, chosen for its 

accurate definitions of large non-linear cable deformations. The interaction of the cable with the surface of a pulley is modeled using a 

contact penalty formulation. An experimental study is performed to analyze the performance of the model outputs: cable tension and 

wrap angle. During the testing the wrap angle had peak-to-peak oscillations of up to 122 degrees. The numerical simulation shows 

reasonable agreement with the experimental measurements. 
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1. Introduction 
Flexible cables and pulleys are common in lifting and robotic applications and research has taken place to model the 

dynamics of the cables. However, few researchers examine the complex dynamic interaction between the cable and the 

pulley. Various discrete modeling approaches have been used to model the dynamics of flexible cables. These methods 

include point-mass [1], finite segment [2] and finite element methods [3]. Seo et al. [4] have noted that for cables 

undergoing large deformations the behavior is highly non-linear. The non-linear Absolute Nodal Coordinate Formulation 

(ANCF) has been shown to be accurate for modeling thin, flexible cables undergoing large deformations [5]. Both rigid 

body displacements and non-linear deformations of the cable can be accurately and efficiently modeled. It is thus well 

suited for cable contact problems, wherein the cable undergoes large deformations along the contact arc and mainly rigid 

body displacements elsewhere. While research extending the ANCF method to contact problems is limited, it has been 

applied to systems such as belt-drives [6], caternary-pantograph systems [4], as well as cable-pulley interactions [7, 8, 9]. 

Bulin et al. [7] use the ANCF approach to model both a statically loaded cable-pulley system and an actuated system 

with a mass on a slope attached to one cable end and a motor on the other. While their investigation focused mainly on the 

frictional aspects of the contact, the researchers also examined the normal contact force distribution as a function of the 

wrap angle. They demonstrate that the distribution is nonlinear and with higher cable bending stiffness the non-linearity 

increases. In the experimental study performed by Bulin et al., the cable experienced variations in the wrap angle of 

approximately 5 degrees, estimated based on the geometry provided. Takehara et al., observed similar results for a system 

with static, hanging loads on each end of the cable [9]. Lugris et al. analyze a similar system, comparing an analytical 

model and an ANCF model, but without experimental validation [8]. Experimental validation of cable models with surface 

contact is uncommon in the literature. The systems examined in the literature mostly consist of purely reciprocating cable 

motion [8, 9] or systems with only small variations in the wrap angle [7]; however, there are scenarios where a dynamic 

cable model which can accurately depict variations in wrap angle is useful [1, 10]. One such scenario is the cable and 

pulley systems for marine towed bodies where the cable is unconstrained on the submerged end and experiences highly 

dynamic loads and excitations. The cable undergoes both reciprocating cable motion, due to the cable being reeled in or 

out, and transverse motion resulting in a large varying wrap angle between the cable and pulley. 

This paper presents the construction a planar ANCF model of the cable-pulley interaction utilizing various models for 

longitudinal and transverse stiffness and the contact forces. Unlike previous works, the presented model specifically 

addresses cable systems that undergo large transverse motions with a large variation in the wrap angle. Furthermore, the 



 

133-2 

model is validated with experimental tension and position measurements. Peak-to-peak variations in the wrap angle of up 

to 122 degrees were tested. Section 2 of the paper provides an overview of the derivation of the equations of motion using 

the Absolute Nodal Coordinate Formulation. In Section 3, the computer implementation of the model and the experimental 

setup is discussed. The experimental and numerical results are compared in Section 4 and the paper ends with concluding 

remarks in Section 5. 

 

2. Model 
Figure 1 shows the system under consideration consisting of three main components: the cable, pulley and an external 

load; the load is released from rest at some initial angle 𝜃. The cable is modeled using the ANCF, where the cable is 

discretized into N finite elements. The planar ANCF element consists of two nodes, each with four degrees of freedom. 

The shape of each element can then be described by a cubic polynomial with a single parameter p. The generalized 

coordinates are defined in the inertial frame and describe the absolute position and slope of the cable at each node. The 

interaction of the cable with pulley surface is incorporated using a contact penalty method to determine the normal contact 

forces. The external load is modeled as a rigid body with four generalized coordinates used to define the degrees of 

freedom of the load. An overview of the formulation, the derivation of the equations of motion and the incorporation of 

normal contact forces are described below. 

 

2.1. Cable Element Coordinate System 
In Figure 2, a deformed ANCF element and the corresponding undeformed element are illustrated. The absolute 

coordinates r of a point on the cable is defined using a vector of generalized coordinate q and a cubic shape function S(p) 

which interpolates between the nodes of each element. Thus, 

 

 
(1) 

  

For a fully parameterized, planar ANCF beam element of unstretched length l, the generalized coordinates that define 

the degrees of freedom consist of the Cartesian coordinates x and y and the parametric slopes and  at each node and 

are given as, 

 

 
(2) 

  

where subscripts 1 and 2 represent the respective nodes of the element or parameter values of p = 0 and p = l. The shape 

function representing a cubic spline is 

 

 
(3) 

  

where I is a 2x2 identity matrix and ξ = p/l. 

 

 
Fig. 1: Diagram of System. 
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Fig. 2: Diagram of ANCF element. 

 
2.2. Cable Equations of Motion 

For each cable element, the standard matrix form of the Newton-Euler equations is 

 

 (4) 

  

where M is the mass matrix, K is the elastic stiffness matrix, C is the damping matrix, Q is an external force vector, and q 

is the vector of generalized coordinates previously defined by Equation 2. Using the shape function S(p) and the 

generalized ANCF coordinates, the mass and stiffness matrices and external force vectors are derived as shown in 

following sections. 

 

2.2.1. Cable Mass Matrix 
In the consistent mass lumping approach used by Shabana [5], the kinetic energy of the element is defined as a 

function of the time derivatives of the nodal degrees of freedom defined in Equation 2. Thus, 

 

 
(5) 

  

where T is the kinetic energy and V is the volume of the cable. The mass matrix M can then be defined as the Hessian of 

the kinetic energy: 

 

 

2.2.2. Cable Stiffness Matrix 
Similarly, Berzeri et al. [11] derive the stiffness matrix from the strain energy U of the element given. Thus, 

 

 

 
(7) 

 

where E is the Young’s modulus of the cable material, A is the cross-sectional area, I is the second moment of area, εl is 

the longitudinal strain, and ĸ is the curvature of the element. The internal stiffness force is the derivative of the strain 

energy with respect to the coordinate vector q. The internal stiffness force vector can be separated into longitudinal and 

transverse components, Ql and Qt . To simplify the computation of these forces it is assumed that the longitudinal strain εl 

is small and also constant throughout the element. The longitudinal force as shown by Berzeri et al. [11] are 

 

 
(6) 
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(8) 

 

A modification is made to the longitudinal strain definition of Berzeri et al.’s model. In order to provide greater 

accuracy for elements with significant curvatures, as one might expect during large wrap angles, the current model 

defines the longitudinal strain as a function of the arc length of the element. Thus, 

 

 

 

(9) 

 

where s is the arc length and l is the unstretched element length. The arc length is defined by integrating the norm of the 

vector r’ with respect to p over the length of the element [12]. For the numerical solution the arc length s is approximated 

using a numerical quadrature, 

 

 

 

(10) 

where i denotes the integration point defined along the length of the element, Ns is the total number of integration points 

and wi is the quadrature weight. Currently, the trapezoidal rule is used with quadrature weights defined as, 

 

 

 

(11) 

 

Defined by Berzeri et al. [11], the transverse stiffness force Qt is 

 

 

 

(12) 

 

where I is the second moment of area. The general stiffness matrix K from Equation 4 is then given by: 

 

 

 

(13) 

 

2.2.3. Cable Damping Matrix 
The damping matrix C from Equation 4 serves both to include energy dissipation and attenuate high frequency 

vibrational modes. The Rayleigh-damping approach [13], wherein the damping matrix is defined as a linear 

combination of the mass and stiffness matrices, is used in the current model. Thus, 

 

 
 

(14) 

 

where Kl and Kt are respectively the longitudinal and transverse components of the stiffness matrix defined in Equation 13, 

and α, β1, and β2 are scalar damping coefficients. 

 

2.3. External Forces on Cable Element 
The vector of external forces Q is the summation of the gravitational body force Qg, the normal contact force Qn, 

and the kinematic constraint force Qc. The derivation of the force vectors are shown in the following sections. 
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2.3.1. Constraint Forces 
The constraint forces are derived from holonomic constraint equations and define the boundary conditions and 

interelement connectivity. Each constraint equation is defined as a function of the generalized coordinates q and has the 

form C(q) = 0. The force required to enact the constraint is 

 

 
 

(15) 

 

where the subscript q represents the Jacobian with respect to the vector of generalized coordinates and λ is a vector of 

Lagrange multipliers.  

The second time derivative of C(q) is 

 

 

 
(16) 

 

Combining Equations 4, 15 and 16, the Lagrange multipliers can be eliminated and the constraint force is expressed as 

 

 

 

(17) 

 

where + represents the Moore-Penrose pseudo-inverse and a is the associated accelerations of the unconstrained system, 

 

 

 
(18) 

 

Used within the construction of Cq, the connectivity between two elements, i and j, is 

 

 
 

(19) 

 

2.3.2. Gravitational Force 
The gravitational force on each element is  

 

 

 
(20) 

 

where ρ is the cable density, V is the elemental cable volume and g = [0 −9.81]
T
 m/s

2
 is the vector of the gravitational 

acceleration in absolute coordinates. 

 

2.3.3. Cable-Pulley Contact Forces 
To model the cable-pulley interaction, a contact penalty is used. The normal force vector Fn acting at a single point on 

the element is defined using the Hunt-Crossley model [8], which represents the surface as a non-linear spring-damper 

 

 

 
(21) 

where ȓ is the unit vector normal to the pulley surface at the point of contact, Kn is the contact stiffness, δ is the relative 

“penetration” of the node into the surface, D is a damping coefficient and b is a positive constant with a value between 1 

and 1.5 from the Hertz contact theory [14]. Selecting the origin at the center of the pulley with radius R and noting that a 

negative value of the penetration has no physical meaning, the penetration and penetration velocity are defined [7]: 
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(22) 

 

 
(23) 

 

The contact force is distributed along the length of the element, thus the total contact force Qn in the element 

coordinates is approximated by a numerical quadrature, 

 

 

 

(24) 

where i denotes the integration point, Nk is the total number of integration points and wi is the quadrature weight. As with 

the arc length in Section 2.2.2, the trapezoidal rule is used with the quadrature weights defined in Equation 11. 

 

2.4. External Load and Multibody System 
For the system under consideration, Figure 1, one end of the rope is attached to an external load, modeled as a 

rigid body with mass mL. The vector of generalized coordinates consisting of the absolute coordinates xP and yP of the 

attachment point and the absolute coordinates xI and yI of the load’s center of inertia is 

 

 

 
(25) 

 

The mass matrix of the rigid body, derived by Jalon and Bayo [15], is implemented here as, 

 

 

 

(26) 

 

where LP,G and LP,I are the distances between the cable attachment point and the centers of gravity and inertia, respectively, 

and I is a 2x2 identity matrix. Points P and I are constrained using the holonomic constraint equation 

 

 

 
(27) 

 

The constraint forces for the rigid body are calculated in the same manner described in Section 2.3.1, using CP,I in 

place of C.  

The multibody system under consideration is made up of N cable elements and the rigid body at the end of the 

cable. The subscript e = 1,2,...,N is used to denote individual elements. To form the coordinate vector �̅� for the entire 

system the coordinate vectors for the cable elements qe and the rigid body qL are concatenated vertically; thus, 

 

 

 
(28) 

 

The resulting system equations of motion can then be written as, 

 

 

 

(29) 
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where �̅�, �̅�, and �̅� are block diagonal system mass, damping and stiffness matrices and �̅̅̅� contains the summations of 

the external forces on each element concatenated vertically.  

In the following section the implementation of the model and the setup of the experimental validation are described. 

 

3. Model Implementation and Validation 
3.1. Computer Implementation 

The implementation of the model, performed in MATLAB, consists of two stages, a pre-processing stage and 

numerical integration of the equations of motion. In the pre-processing stage, the shape function is integrated symbolically 

to determine the system mass matrix �̅�, gravitational force vector �̅� g , and constant components of the system stiffness 

matrix �̅�. The shape function and its derivative are evaluated at a set of predefined points, which are required to calculate 

the element strains and contact penetrations. In the second stage of the solution, MATLAB’s first order ODE solve, 

ode15s, is used to perform the numerical integration. The physical parameters of the model which were investigated in this 

study are found in Table 1 

 
Table 1: Model parameters. 

 

 
 

Due to the complexity of the contact penalty forces of the model and the sensitivity to the initial conditions, it is 

difficult to determine exact initial conditions of each node analytically. Thus, a preliminary estimate of the initial nodal 

configuration is assumed while a forcing function is applied to the external load such that the system is driven towards the 

initial nominal wrap angle and the nodal velocities converge to zero. Once the condition for the nodal velocities and wrap 

angle are met, a stable simulation can commence.  

A convergence study was performed using the parameters listed for Configuration 1 in Table 1. Simulations were 

performed to determine the cable tension and wrap angle while varying the number of elements from 10 to 25 elements. 

Each simulation was performed with 10 integration points per element. Figure 3a shows the angle of the cable from the 

horizontal as a function of time for 10 and 20 element simulations. The 10 element simulation is represented by the red 

line, while the 20 element simulation is represented by the blue line. It was found that the rope motion, specifically the 

angle of the rope from the horizontal axis, has a low dependence on the number of elements. Figure 3b shows the 

simulated cable tension for the same two configurations as a function of time. The 10 element simulation is represented by 

the red line, while the 20 element simulation is represented by the blue line. Spurious low frequency oscillations in the 

tension are observed when 10 are used. The amplitude of the oscillations is reduced as the number of elements is increased 

to 15, and becomes negligible with 20 elements. With 25 elements, there is no further reduction in the amplitude of the 

vibrations, but a 59% increase in the computation time. Thus, 20 elements were used for subsequent simulations. Figure 3a 

also indicates that the model implementation is able to capture a large dynamic variation of the wrap angle (122 degrees 

peak-to-peak) something which previous studies have not explicitly shown [7]. 
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Fig. 3: Simulated wrap angle and tension as a function of time using 10 and 20 elements. 

 

 

3.2. Experimental Setup and Parameters 
In order to validate the model an experiment was performed. Consistent with Figure 1, the experiment used a 

small pulley and a nylon rope fixed at one end and attached to a load at the other. The load was released from an initial 

angle, measured from the horizontal, with the rope taut. The tension was measured using a 100 kg load cell. The angle 

of the rope relative to the horizontal axis was measured via a vision system to determine the wrap angle of the cable on 

the pulley. Colored markers were placed at two points along the rope and camera footage of the rope motion was 

collected at 60 frames per second. 

The recorded frames were converted to Hue-Saturation-Value (HSV) colormaps, then each pixel with a hue and 

saturation value within predefined ranges was identified. The coordinates of each matching pixel were then averaged 

to find the centroid of each marker. This analysis was performed using the image processing tools in MATLAB. A 

low-pass Butterworth filter was applied to both the tension and angle measurements. The experiment was repeated for 

varying loads and initial wrap angles. The parameters of the system recorded during the experiments are given in 

Table 1. These values were also used to perform the matching simulations. The modulus of elasticity of Nylon 

composites ranges from 2 to 4 GPa [16], thus a representative value of 3 GPa was used. Due to the complex bending 

behavior of fibrous rope, the second moment of area is significantly smaller than that of a solid. Similar to the 

convergence shown by Bulin et al. [7], the second moment of area was selected by lowering the value until the contact 

forces converged to a constant distribution and was held constant at 4.0 × 10
−14

 m
4
 for all simulations. The rope length 

is measured along the centerline from the top of the pulley to the load attachment point and was 42 cm. A comparison 

of the experimental measurements and the simulated results is provided in the following sections. 

 

3.3. Simulation and Experiment Comparison  
A comparative analysis was performed for three test cases using the parameters listed in Table 1 and the 

representative results are displayed in Figure 4. Ten seconds of simulated motion was recorded for each run and 20 

elements were used. Each element was further discretized to 10 equal increments of the parameter p for evaluating the 

element strain and contact distribution. The damping parameters of Equations 14 and 21 were increased until the high 

frequency vibration modes were attenuated and stability of the numerical solution was obtained. The final values used 

in the simulations were: α = 0 s
−1

 , β1 = 1×10
−2

 s, β2 = 1×10
−4

 , and D = 1 s/m 
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Fig. 4: Configuration 1: (a) Experimental and simulated rope angle measured from horizontal, (b) residual error of simulated rope angle 

compared to experimental measurement, (c) experimental and simulated rope tension, and (d) residual error of simulated rope tension 

compared to experimental measurement. 

 

Figure 4a plots the numerical, a solid blue line, and experimental results, dashed orange line, of the wrap angle in 

degrees as a function of time for Configuration 1. Figure 4b plots the error between the simulated wrap angle and the 

experimental measurements over the same time frame. The standard deviation of the error was determined to be 1.76 

degrees 7 with a maximum error of 3.90 degrees as the wrap angle varied between 34.9 and 147 degrees. Similarly, the 

standard deviation of the error was 2.71 degrees with a maximum error of 5.27 degrees as the wrap angle varied between 

40.4 and 139 degrees for Configuration 2. The standard deviation of the error was 2.97 degrees with a maximum error of 

5.86 degrees as the wrap angle varied between 49.4 and 130 degrees for Configuration 3. These results indicate a good 

agreement of the model implementation to the physical results over the given time period. 

Using the same line types, Figure 4c compares the numerical and experimental cable tension while Figure 4d shows 

the difference between the simulated and experimental tension as a function of time for Configuration 1. The standard 

deviation of the residuals was determined to be 8.58 N with a maximum error of 27.2 N. The measured tension varied 

between 49 and 167 N. Similarly, the standard deviation of the tension error was 20.3 N with a maximum error of 54.9 N 

for Configuration 2 where the measured tension varied between 121 N and 297 N. The standard deviation of the tension 

error was 25.3 N with a maximum error of 64.2 N for Configuration 3 where the measured tension varied between 204 and 

370 N. 

 

4. Conclusion 
In this paper, a finite element model based on the Absolute Nodal Coordinate Formulation was proposed to simulate 

the motion and elastic behavior of a cable and pulley system. The model was developed specifically for cases where there 

are large dynamic variations in the wrap angle and cable tension. A contact penalty method was used to model the 

interaction of the cable with the surface of a pulley. An experiment with a rope, pulley and a suspended load was 

performed. After releasing the load from an initial position and allowing it to swing, the cable orientation and tension were 

measured. During the testing the wrap angle had peak-to-peak swings of up to 122 degrees. The standard deviations of the 

rope angle error between the simulation and experimental were 1.76, 2.71 and 2.97 degrees for the three configurations 

tested. The standard deviations of the rope tension error were 8.58, 20.3 and 25.3 N. Future work will focus on reducing 

the error in the tension and extending the model to a marine towing system with reciprocating cable motion and motion of 

the pulley reference frame. 
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