Skip to main content
Log in

Dipole order and stability of the ferroelectric and antiferroelectric states in lead zirconate

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Coordination polyhedra have been constructed for Pb in a PbZrO2 crystal. It is shown that there is no geometric similarity between the displacements of the lead ions and the dipole moments responsible for the antiferroelectricity, which is generally assumed in calculations of the relative stability of the antiferroelectric and ferroelectric phases in pure PbZrO3 and its solid solutions. The latest data on the atomic structure of phases with the Pbam and Cm2m space groups are used to refine conventional reasoning on the dipole motif of this crystal. It is shown that in the point-dipole model, the antiferroelectric dipole configuration is energetically more favorable than the ferroelectric, which is consistent with the observation conditions for both phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sawaguchi, H. Maniva, and S. Hoshino, Phys. Rev. 83, 1078 (1951).

    Article  ADS  Google Scholar 

  2. G. E. Shatalova, V. S. Filip’ev, L. M. Kantsel’son, and E. G. Fesenko, Kristallografiya 19, 412 (1974) [Sov. Phys. Crystallogr. 19, 257 (1974)].

    Google Scholar 

  3. H. Fujishita, Y. Shiozaki, and E. Sawaguchi, J. Phys. Soc. Jpn. 16, 1391 (1979).

    Google Scholar 

  4. W. Kinase, K. Yano, and N. Ohnishi, Ferroelectrics 46, 281 (1983).

    Google Scholar 

  5. L. Benguigui, Can. J. Phys. 46, 1628 (1968).

    ADS  Google Scholar 

  6. L. Benguigui and H. Hervet, Can. J. Phys. 47, 2439 (1969).

    ADS  Google Scholar 

  7. L. Benguigui, J. Solid State Chem. 3, 381 (1971).

    Article  ADS  Google Scholar 

  8. W. Kinase (private communication).

  9. H. Fujishita, Y. Shiozaki, N. Achiva, and E. Sawaguchi, J. Phys. Soc. Jpn. 51, 3583 (1982).

    Article  Google Scholar 

  10. M. D. Glinchuk, Vl. V. Skorokhod, I. P. Bykov, V. G. Grachov, V. G. Smotrakov, and V. V. Eremkin, Abstracts of IMF-8, Maryland, USA, 1993, P3: 084, p. 279.

  11. A. V. Leyderman, V. G. Zaletov, I. N. Leontiev, O. E. Fesenko, N. G. Leontiev, and V. G. Smotrakov, J. Kor. Phys. Soc. (in press).

  12. V. A. Shuvaeva, M. Yu. Antipin, O. E. Fesenko, and Yu. T. Struchkov, J. Phys.: Condens. Matter 8, 1615 (1996).

    Article  ADS  Google Scholar 

  13. A. S. Sonin and B. A. Strukov, Introduction to Ferroelectricity [in Russian], Vysshaya Shkola, Moscow (1970), pp. 10–12.

    Google Scholar 

  14. O. E. Fesenko and V. G. Smotrakov, Ferroelectrics 12, 211 (1976).

    Google Scholar 

  15. O. E. Fesenko, R. V. Kolesova, and Yu. G. Sindeyev, Ferroelectrics 20, 177 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 40, 1324–1327 (July 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyderman, A.V., Leont’ev, I.N., Fesenko, O.E. et al. Dipole order and stability of the ferroelectric and antiferroelectric states in lead zirconate. Phys. Solid State 40, 1204–1207 (1998). https://doi.org/10.1134/1.1130521

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130521

Keywords

Navigation