Skip to main content
Log in

Electron transport in granular amorphous silicon dioxide films with ferromagnetic nanoparticles placed in a magnetic field

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Electron transport in amorphous silicon dioxide films with embedded nanoparticles (Co, Nb, Ta) was studied. The mean number of localized states in the interparticle tunneling channel was derived from the temperature dependence of conductivity for various grain concentrations under the assumption of the electron transport being governed by resonance tunneling in a chain of localized states between grains. To confirm the assumption of the inelastic character of tunneling, the dependences of the magnetoresistance on grain concentration, temperature, and magnetic field were studied. Accepting the single-orbital model, where the intergrain tunneling magnetoresistance is determined by s-s tunneling, it was found that the existence of weakly split localized states in the tunneling channel results in a lack of magnetoresistance saturation in strong magnetic fields. The combined effect of a decrease in the s-s tunneling coefficient and of growth in the probability of inelastic electron spin scattering with increasing length of the chain of localized states between particles in which the electron is tunneling accounts for the characteristic temperature-concentration dependences of the magnetoresistance. The experimental observation of these features provides an argument for the electron transport in a-SiO2(Co,Nb,Ta) structures being governed by inelastic resonance tunneling through intergrain localized states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mitani, K. Takanashi, K. Yakushiji, and H. Fujimori, J. Appl. Phys. 83(11), 6524 (1998).

    Article  ADS  Google Scholar 

  2. B. A. Aronzon, A. B. Granovskii, D. Yu. Kovalev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71(11), 687 (2000) [JETP Lett. 71, 469 (2000)].

    Google Scholar 

  3. B. A. Aronzon, D. Yu. Kovalev, A. N. Lagar’kov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 70(2), 87 (1999) [JETP Lett. 70, 90 (1999)].

    Google Scholar 

  4. E. Z. Meilikhov, Zh. Éksp. Teor. Fiz. 117(6), 1136 (2000) [JETP 90, 987 (2000)].

    Google Scholar 

  5. L. I. Glazman and K. A. Matveev, Zh. Éksp. Teor. Fiz. 94(6), 332 (1988) [Sov. Phys. JETP 67, 1276 (1988)].

    Google Scholar 

  6. L. I. Glazman and R. I. Shekhter, Zh. Éksp. Teor. Fiz. 94(1), 292 (1988) [Sov. Phys. JETP 67, 1462 (1988)].

    Google Scholar 

  7. J. Mathon, Phys. Rev. B 56(18), 11810 (1997).

    Google Scholar 

  8. J. S. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999).

    Article  ADS  Google Scholar 

  9. Ping Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31(1), 44 (1973).

    Article  ADS  Google Scholar 

  10. Ping Sheng, Philos. Mag. B 65(3), 357 (1992).

    Google Scholar 

  11. A. Möbius, M. Richter, and B. Drittler, Phys. Rev. B 45(20), 11568 (1992).

  12. E. Cuevas, M. Ortuño, and J. Ruiz, Phys. Rev. Lett. 71(12), 1871 (1993).

    Article  ADS  Google Scholar 

  13. D. A. Zakheim, I. V. Rozhansky, I. P. Smirnova, and S. A. Gurevich, Zh. Éksp. Teor. Fiz. 118(3), 637 (2000) [JETP 91, 553 (2000)].

    Google Scholar 

  14. E. Z. Meilikhov, Zh. Éksp. Teor. Fiz. 115(4), 1484 (1999) [JETP 88, 819 (1999)].

    Google Scholar 

  15. S. V. Vyshenski, Pis’ma Zh. Éksp. Teor. Fiz. 61(1–2), 105 (1995) [JETP Lett. 61, 111 (1995)].

    Google Scholar 

  16. L. V. Litvin, V. A. Kolosanov, D. G. Baksheev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 72(5), 388 (2000) [JETP Lett. 72, 264 (2000)].

    Google Scholar 

  17. A. V. Tartakovskii, M. V. Fistul’, M. É. Raikh, and I. M. Ruzin, Fiz. Tekh. Poluprovodn. (Leningrad) 21(4), 603 (1987) [Sov. Phys. Semicond. 21, 370 (1987)].

    Google Scholar 

  18. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  19. L. V. Lutsev, T. K. Zvonareva, and V. M. Lebedev, Pis’ma Zh. Tekh. Fiz. 27(15), 84 (2001) [Tech. Phys. Lett. 27, 659 (2001)].

    Google Scholar 

  20. E. Yu. Tsymbal and D. G. Pettifor, Phys. Rev. B 58(1), 432 (1998).

    Article  ADS  Google Scholar 

  21. A. M. Bratkovsky, Phys. Rev. B 56(5), 2344 (1997).

    Article  ADS  Google Scholar 

  22. A. V. Vedyaev, D. A. Bagrets, A. A. Bagrets, and B. Dieni, in Proceedings of the XVII International School-Workshop “Novel Magnetic Materials for Microelectronics,” Moscow, 2000, p. 622.

  23. A. S. Davydov, Quantum Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).

    Google Scholar 

  24. E. Yu. Tsymbal and D. G. Pettifor, J. Phys.: Condens. Matter 9(30), L411 (1997).

    Article  ADS  Google Scholar 

  25. J. S. Helman and B. Abeles, Phys. Rev. Lett. 37(21), 1429 (1976).

    Article  ADS  Google Scholar 

  26. E. Z. Meilikhov, B. Raquet, and H. Rakoto, Zh. Éksp. Teor. Fiz. 119(5), 937 (2001) [JETP 92, 816 (2001)].

    Google Scholar 

  27. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994).

    Google Scholar 

  28. L. V. Lutsev, Fiz. Tverd. Tela (St. Petersburg) 44(1), 95 (2002) [Phys. Solid State 44, 102 (2002)].

    Google Scholar 

  29. J. I. Gittleman, Y. Goldstein, and S. Bozowski, Phys. Rev. B 5(9), 3609 (1972).

    Article  ADS  Google Scholar 

  30. A. Bunde, A. Coniglio, D. C. Hong, and H. E. Stanley, J. Phys. A 18, L137 (1985).

    ADS  Google Scholar 

  31. D. C. Hong, H. E. Stanley, A. Coniglio, and A. Bunde, Phys. Rev. B 33(7), 4564 (1986).

    Article  ADS  Google Scholar 

  32. Yu. E. Kalinin, A. V. Sitnikov, O. V. Stognei, et al., Mater. Sci. Eng. A 304–306, 941 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 10, 2002, pp. 1802–1810.

Original Russian Text Copyright © 2002 by Lutsev, Kalinin, Sitnikov, Stogne\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutsev, L.V., Kalinin, Y.E., Sitnikov, A.V. et al. Electron transport in granular amorphous silicon dioxide films with ferromagnetic nanoparticles placed in a magnetic field. Phys. Solid State 44, 1889–1897 (2002). https://doi.org/10.1134/1.1514778

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1514778

Keywords

Navigation