Skip to main content
Log in

Change of symmetry and rotation of thermal field as a new method of control of heat and mass transfer in crystal growth (by example of β-BaB2O4)

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

It is suggested to change the symmetry and rotation of thermal field as a method of contact-free control of the heat and mass transfer in crystal growth. By the example of growth of the low-temperature barium borate (β-BaB2O4) phase, a technically important crystal with nonlinear-optical properties, it is shown that the use of the suggested method allows one to grow larger crystals of a higher quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Zemskov and M. R. Raukhman, Hydromechanics and Heat and Mass Exchange under Production of Materials (Nauka, Moscow, 1990), p. 131 [in Russian].

    Google Scholar 

  2. T. Nakamura, T. Nishinaga, P. Ge, and C. Huo, J. Cryst. Growth 211, 441 (2000).

    Article  Google Scholar 

  3. Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics, 2nd ed. (Nauka, Moscow, 1979; Mir, Moscow, 1982).

    Google Scholar 

  4. V. I. Polezhaev, O. A. Bessonov, N. V. Nikitin, and S. A. Nikitin, J. Cryst. Growth 230, 40 (2001).

    Article  Google Scholar 

  5. M. Iwamoto, M. Akamatsu, T. Nakao, and H. Ozoe, in Abstracts of 1st Asian Conference on Crystal Growth and Crystal Technology (Sendai, Japan, 2000), p. 370.

  6. K.-W. Yi, V. B. Booker, M. Eguchi, et al., J. Cryst. Growth 156, 383 (1995).

    Article  Google Scholar 

  7. D. Vizman, J. Friedrich, and G. Muller, in Proceedings of Sixth International Conference on Advanced Computational Methods in Heat Transfer (WIT Press, Southampton, 2000), p. 137.

    Google Scholar 

  8. I. Yu. Evstratov, V. V. Kalaev, A. I. Zhmakin, et al., J. Cryst. Growth 230, 22 (2001).

    Article  Google Scholar 

  9. B. Basu, S. Enger, M. Breuer, and F. Durst, J. Cryst. Growth 230, 148 (2001).

    Article  Google Scholar 

  10. I. Baumann, J. Cryst. Growth 144, 193 (1994).

    Article  Google Scholar 

  11. Q. Xiao and J. J. Derby, J. Cryst. Growth 152, 169 (1995).

    Article  Google Scholar 

  12. M. Watanabe, M. Eguchi, K. Kakimoto, et al., J. Cryst. Growth 151, 285 (1995).

    Article  Google Scholar 

  13. L. S. Milevskii, Kristallografiya 6(2), 249 (1961) [Sov. Phys. Crystallogr. 6, 193 (1961)].

    Google Scholar 

  14. K. Morisane, A. Vitt, and H. Gates, Distribution of Impurities in Single Crystals (Mir, Moscow, 1968).

    Google Scholar 

  15. A. I. Landau, Fiz. Met. Metalloved. 6(1), 148 (1985).

    Google Scholar 

  16. T. Jung and G. Muller, J. Cryst. Growth 171, 373 (1997).

    Article  Google Scholar 

  17. V. G. Kosushkin, in Proceedings of Fourth International Conference on Single Crystal Growth and Heat and Mass Transfer (Inst. of Physics and Power Engineering, Obninsk, 2001), Vol. 2, p. 395.

    Google Scholar 

  18. V. G. Kosushkin, B. G. Zakharov, Yu. A. Serebryakov, and S. A. Nikitin, in Proceedings of II All-Russian Symposium on Processes of Heat and Mass Transfer and Growth of Single Crystals and Thin-Film Structures (GNTs FÉEI, Obninsk, 1997), p. 232.

    Google Scholar 

  19. A. E. Kokh, Doctoral Dissertation in Engineering (Inst. of General Physics, Russian Academy of Sciences, Moscow, 2003).

    Google Scholar 

  20. A. E. Kokh, V. E. Kokh, and N. G. Kononova, Prib. Tekh. Éksp., No. 1, 157 (2000) [Instrum. Exp. Tech. 43, 145 (2000)].

  21. A. E. Kokh, A. S. Vakulenko, and V. E. Kokh, Prib. Tekh. Éksp., No. 6, 136 (2000) [Instrum. Exp. Tech. 43, 852 (2000)].

  22. A. E. Kokh, V. N. Popov, and P. W. Mokrushnikov, J. Cryst. Growth 230, 155 (2001).

    Article  Google Scholar 

  23. R. S. Feigelson, R. J. Raymakers, and R. K. Route, J. Cryst. Growth 97, 352 (1989).

    Article  Google Scholar 

  24. D. Y. Tang, W. R. Zeng, and Q. L. Zhao, J. Cryst. Growth 123, 445 (1992).

    Article  ADS  Google Scholar 

  25. W. Chen, A. Jiang, and G. Wang, J. Cryst. Growth 256, 383 (2003).

    Google Scholar 

  26. P. P. Fedorov, A. E. Kokh, and N. G. Kononova, Usp. Khim. 71(8), 741 (2002).

    Google Scholar 

  27. S. Nakamura, M. Eguchi, T. Azami, and T. Hibiya, J. Cryst. Growth 207, 55 (1999).

    Article  Google Scholar 

  28. A. E. Kokh, N. G. Kononova, and P. W. Mokruchnikov, J. Cryst. Growth 216, 359 (2000).

    Article  Google Scholar 

  29. M. P. Shaskol’skaya, Crystallography (Vysshaya Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  30. R. Laudise and R. Parker, The Growth of Single Crystals; Crystal Growth Mechanisms: Energetics, Kinematics and Transport (Prentice Hall, New York, 1970; Mir, Moscow, 1974).

    Google Scholar 

  31. P. P. Fedorov, N. G. Kononova, A. E. Kokh, et al., Zh. Neorg. Khim. 47(7), 1150 (2002).

    Google Scholar 

  32. A. E. Kokh, N. G. Kononova, P. P. Fedorov, et al., Kristallografiya 47(4), 616 (2002) [Crystallogr. Rep. 47, 559 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 50, No. 1, 2005, pp. 169–176.

Original Russian Text Copyright © 2005 by Kokh, Kononova, Bekker, Vlezko, Mokrushnikov, Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokh, A.E., Kononova, N.G., Bekker, T.B. et al. Change of symmetry and rotation of thermal field as a new method of control of heat and mass transfer in crystal growth (by example of β-BaB2O4). Crystallogr. Rep. 50, 160–166 (2005). https://doi.org/10.1134/1.1857265

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1857265

Keywords

Navigation