Skip to main content
Log in

Structural properties and current transport in a nanocomposite formed on a silicon surface by oxidation of the porous layer

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The possibility of obtaining a Si-SiO2 nanocomposite layer by oxidation of porous silicon is demonstrated. The nanocomposite thus prepared consists of silicon oxide with inclusions of crystalline silicon in the form of rounded particles 5 to 30 nm in diameter and a filamentary cellular structure with filaments a few nanometers thick. The I-V characteristics of these structures were measured under different sample excitation conditions (photo-and thermal stimulation). The trap concentration and effective carrier mobility are estimated. Carriers are found to be captured intensely by traps created in the large-area interface in the composite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Fizmatlit, Moscow, 2001; Cambridge International Science Publishing, Cambridge, 2004).

    Google Scholar 

  2. M. S. Ablova, M. V. Zamoryanskaya, V. I. Sokolov, and R. I. Khasanov, Pis’ma Zh. Éksp. Teor. Fiz. 29(11), 41 (2003).

    Google Scholar 

  3. B. Dac and S. P. Mc. Ginnis, Semicond. Sci. Technol. 14, 998 (1999).

    ADS  Google Scholar 

  4. L. A. Balagurov, S. C. Bauliss, A. F. Orlov, B. Unal, and D. G. Yarkin, in Proceedings of International Conference on Porous Semiconductors: Science and Technology, Madrid, 2000, p. 53.

  5. A. G. Cullis, L. T. Ganam, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).

    Article  ADS  Google Scholar 

  6. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Status Solidi B 215, 871 (1999).

    Google Scholar 

  7. T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).

    Article  ADS  Google Scholar 

  8. O. Bisi, S. Ossicicni, and L. Pavesi, Surf. Sci. Rep. 38, 1 (2000).

    Article  Google Scholar 

  9. X. L. Wu, S. J. Xiong, D. L. Fan, Y. Gu, X. M. Bao, B. B. Sui, and M. J. Stokes, Phys. Rev. B 62(12), R7759 (2000).

  10. M. Ballucani, V. Bondarenko, G. Lamedica, V. A. Yakovleva, and A. Ferrari, Appl. Phys. Lett. 74, 1960 (1999).

    ADS  Google Scholar 

  11. M. Stewart, E. G. Robins, T. W. Geders, M. J. Allen, H. Ch. Choi, and J. M. Buriak, in Proceedings of International Conference on Porous Semiconductors: Science and Technology, Madrid, 2000, p. 31.

  12. D. Dimova-Malinovska, J. Lumin. 80, 207 (1998).

    Google Scholar 

  13. G. I. Skanavi, Physics of Dielectrics (Strong Field Region) (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  14. B. E. Deal, E. H. Snow, and C. A. Mead, J. Phys. Chem. Solids 27(11–12), 1873 (1966).

    Google Scholar 

  15. A. M. Goodman, Phys. Rev. 114(2), 588 (1966).

    ADS  Google Scholar 

  16. A. P. Baraban, P. P. Konorov, and A. A. Kruchinin, Optoelectron. Poluprovodn. Tekh. 7, 31 (1985).

    Google Scholar 

  17. R. M. Hill, Philos. Mag. 24(192), 1307 (1971).

    Google Scholar 

  18. V. F. Korzo and V. N. Chernyaev, Dielectric Films in Microelectronics (Énergiya, Moscow, 1977) [in Russian].

    Google Scholar 

  19. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970; Mir, Moscow, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 7, 2005, pp. 1316–1322.

Original Russian Text Copyright © 2005 by Sorokin, Grigor’ev, Kalmykov, Sokolov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, L.M., Grigor’ev, L.V., Kalmykov, A.E. et al. Structural properties and current transport in a nanocomposite formed on a silicon surface by oxidation of the porous layer. Phys. Solid State 47, 1365–1371 (2005). https://doi.org/10.1134/1.1992619

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1992619

Keywords

Navigation