Skip to main content
Log in

Surface magnetism of Sc-substituted Ba-M hexaferrites

  • Solids: Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A technique of simultaneous gamma-ray, x-ray, and electron Mössbauer spectroscopy is used to study the magnetic structure of the surface layer with direct comparison to the magnetic structure inside single crystal samples of hexagonal Ba-M ferrites, in which part of the iron ions have been replaced by diamagnetic Sc ions (chemical formula BaFe12−δ ScδO9). It is found that when the diamagnetic Sc ions are introduced into the crystal lattice of BaFe12−δ ScδO19 at concentrations (x=0.4 and 0.6) far below the level at which the collinear magnetic structure inside the sample is destroyed, a macroscopic layer of thickness ∼300 nm develops on the surface, in which the magnetic moments of the iron ions are oriented noncollinearly with respect to the moments inside the sample. The deviation 〈θ〉 of the magnetic moments in BaFe11.6Sc0.4O19 was 10° ± 62° for x=0.4, and when the Sc concentration was raised to 0.6, the angle 〈θ〉 increased to 17° ± 62°. The noncollinear magnetic structure in the surface layer in these crystals develops because of further reduction in the energy of the exchange interactions owing to the presence of a “defect,” such as the surface. For the first time, therefore, an anisotropic surface layer whose magnetic properties differ from those in the interior of a sample has been observed experimentally in ferromagnetic crystals, as predicted by Néel [L. Néel, Phys. Radium. 15, 225 (1954)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Néel, J. Phys. Radium 15, 225 (1954).

    MATH  Google Scholar 

  2. L. Liebermann, D. R. Fridkin, and H. B. Shore, Phys. Rev. Lett. 22, 539 (1969); L. Liebermann, J. Clinton, D. M. Edwards, and J. Mathon, Phys. Rev. Lett. 25, 232 (1970).

    Article  ADS  Google Scholar 

  3. A. E. Berkowitz, W. J. Schuele, and P. J. Flanders, J. Appl. Phys. 39, 1261 (1968).

    Article  Google Scholar 

  4. J. M. D. Coey, Phys. Rev. Lett. 27, 1140 (1971); Can. J. Phys. 65, 1210 (1987).

    Article  ADS  Google Scholar 

  5. A. M. van der Kraan, Phys. Status Solidi A 18, 215 (1973).

    Google Scholar 

  6. A. H. Morrish, K. Haneda, and P. J. Schurer, J. de Phys. Colloque C 6, 37, C6–301 (1976).

    Google Scholar 

  7. P. M. de Bakker, E. DeGrave, R. E. Vandenberghe, and L. H. Bowen, Hyperfine Interact. 54, 493 (1990).

    Google Scholar 

  8. A. E. Berkowitz, J. A. Lahut, and C. E. van Buren, IEEE Trans. Magn. MAG-16, 184 (1980).

    Google Scholar 

  9. K. Haneda, H. Kojima, A. H. Morrish, P. J. Picone, and K. Wakai, J. Appl. Phys. 53, 2686 (1982).

    Article  ADS  Google Scholar 

  10. A. H. Morrish and K. Haneda, IEEE Trans. Magn. MAG-25, 2597 (1989); J. Appl. Phys. 52, 2496 (1981).

    Google Scholar 

  11. K. Haneda and A. H. Morrish, Nucl. Instrum. Methods, Phys. Res. B 76, 132 (1993).

    Article  ADS  Google Scholar 

  12. K. Haneda, Can. J. Phys. 65, 1233 (1987).

    ADS  Google Scholar 

  13. R. H. Kodama, A. E. Berkowitz, E. J. McNiff Jr., and S. Foner, J. Appl. Phys. 81, 5552 (1997).

    Article  ADS  Google Scholar 

  14. D. Lin, A. C. Nunes, C. F. Majkrzak, A. E. Berkowitz, and M. B. Maple, J. Magn. Magn. Mater. 45, 343 (1995).

    ADS  Google Scholar 

  15. S. S. Parkin, R. Sigsbee, R. Felici, and G. P. Felsher, J. Appl. Phys. 57, 1371 (1985).

    Article  Google Scholar 

  16. F. T. Parker, M. W. Foster, D. Margulis, and A. E. Berkowitz, Phys. Rev. B 47, 7885 (1993).

    Article  ADS  Google Scholar 

  17. Q. A. Pankhurst and P. J. Pollard, Phys. Rev. Lett. 67, 325 (1991).

    Article  Google Scholar 

  18. P. V. Hendrilsen, S. Linderoth, C. A. Oxborrow, and S. Morup, J. Phys.: Condens. Matter 6, 3091 (1994).

    ADS  Google Scholar 

  19. G. S. Krinchik, A. P. Khrebtov, A. A. Askochenskii, and V. E. Zubov, JETP Lett. 17, 345 (1973); G. S. Krinchik and V. E. Zubov, Zh. Éksp. Teor. Fiz. 69, 707 (1975_[Sov. Phys. JETP 42, 359 (1975)].

    ADS  Google Scholar 

  20. V. G. Labushkin, V. V. Rudenko, Yu. R. Sarkisov, V. A. Sarkisyan, and V. N. Seleznev, JETP Lett. 34, 544 (1981).

    ADS  Google Scholar 

  21. V. E. Zubov, G. S. Krinchik, V. N. Selznev, and M. B. Strugatskii, Zh. Éksp. Teor. Fiz. 94, 290 (1988) [Sov. Phys. JETP 67, 2122 (1988)]; V. E. Zubov, G. S. Krinchik, V. N. Seleznev, and M. B. Strugatsky, J. Magn. Magn. Mater. 86, 105 (1990).

    Google Scholar 

  22. E. A. Balykina, E. A. Gan’shina, and G. S. Krinchik, Zh. Éksp. Teor. Fiz. 93 1879 (1987) [Sov. Phys. JETP 66, 1053 (1987)]; Fiz. Tverd. Tela 30, 570 (1988) [Sov. Phys. Solid State 30, 326 (1988)].

    Google Scholar 

  23. A. S. Kamzin, V. P. Rusakov, and L. A. Grigoriev, Physics of Transition Metals, International Conf. USSR Proceed, Part II (1988), p. 271; A. S. Kamzin and L. A. Grigor’ev, Pis’ma Zh. Tekh. Fiz. 16, 16, 38 (1990) [Sov. Tech. Phys. Lett. 16, 616 (1990)].

  24. A. S. Kamzin and L. A. Grigor’ev, [JETP Lett. 57, 557 (1993)]; A. S. Kamzin and L. A. Grigor’ev, Zh. Éksp. Teor. Fiz. 104, 3489 (1993) [JETP 77, 658 (1993)].

    ADS  Google Scholar 

  25. A. S. Kamzin, L. A. Grigor’ev, and S. A. Kamzin, Fiz. Tverd. Tela 36, 1399 (1994) [Phys. Solid State 36, 765 (1994)]; Fiz. Tverd. Tela 37, 67 (1995) [Phys. Solid State 37, 33 (1995)].

    Google Scholar 

  26. A. S. Kamzin, L. P. Ol’khovik, and V. L. Rozenbaum, JETP Lett. 61, 936 (1965); J. Magn. Magn. Mater. 161, 139 (1996); Zh. Éksp. Teor. Fiz. 111, 1426 (1997) [JETP 84, 788 (1997)].

    ADS  Google Scholar 

  27. M. I. Namtalishvili, O. P. Aleshko-Ozhevskii, and I. I. Yamzin, Fiz. Tverd. Tela 13, 2543 (1971) [Sov. Phys. Solid State 13, 2137 (1972)].

    Google Scholar 

  28. O. P. Aleshko-Ozhevskii, R. A. Sizov, I. I. Yamzin, and V. A. Lyubimtsev, Zh. Éksp. Teor. Fiz. 55, 820 (1968) [Sov. Phys. JETP 27, 425 (1969)].

    Google Scholar 

  29. O. P. Aleshko-Ozhevskii, Ya. Litsevich, A. Murasik, I. I. Yamzin, Kristallografiya, 19, 331 (1974) [Sov. Phys. Crystallogr. 19, 201 (1974)].

    Google Scholar 

  30. A. S. Kamzin, L. P. Ol’khovik, and V. L. Rozenbaum, JETP Lett. 67, 843 (1998).

    ADS  Google Scholar 

  31. V. I. Gol’danskii, L. I. Krizhanskii, and V. V. Khrapov, eds., Chemical Applications of Mössbauer Spectroscopy [in Russian], Mir, Moscow (1977).

    Google Scholar 

  32. A. P. Kuprin and A. A. Novakova, Nucl. Instrum. Methods Phys. Res. B 62, 493 (1992).

    Article  ADS  Google Scholar 

  33. A. S. Kamzin and L. A. Grigor’ev, Pis’ma Zh. Tekh. Fiz. 19(8), 38 (1993) [Tech. Phys. Lett. 19, 517 (1983)].

    Google Scholar 

  34. T. Kobayashi, T. Fukumura, and A. Nakanishi, Nucl. Instrum. Methods Phys. Res. B 76, 204 (1993).

    ADS  Google Scholar 

  35. G. Klingelhofer, U. Imkeller, E. Kankeleit, and B. Stahl, Hyperfine Interact. 69, 819 (1991).

    Google Scholar 

  36. A. S. Kamzin and L. A. Grigor’ev, Pis’ma Zh. Tekh. Fiz. 19(8), 50 (1993) [Tech. Phys. Lett. 19, 245 (1993)].

    Google Scholar 

  37. Sh. Sh. Bashkirov, A. B. Liberman, and V. I. Sinyavskii, Magnetic Microstructure of Ferrites [in Russian], Izdatel’stvo Kazanskogo Universiteta, Kazan (1978).

    Google Scholar 

  38. Yu. A. Mamalui, L. P. Ol’khovik, and L. F. Checherskaya, Physics and Technology of High Pressures [in Russian], No. 12, 17 (1983).

  39. B. J. Evans, F. Granjean, A. P. Lilot, R. H. Vogel, and A. Gerard, J. Magn. Magn. Mater. 67, 123 (1987).

    Article  ADS  Google Scholar 

  40. G. Albanese, A. Deriu, L. Lucchini, and G. Slokar, Appl. Phys. A: Solids Surf. 26, 45 (1981); IEEE Trans. Magn. MAG-17, 2639 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 116, 1648–1663 (November 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamzin, A.S. Surface magnetism of Sc-substituted Ba-M hexaferrites. J. Exp. Theor. Phys. 89, 890–898 (1999). https://doi.org/10.1134/1.558929

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558929

Keywords

Navigation