Skip to main content
Log in

Shock wave structure in dense gases

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The internal structure of a shock wave front in a gas is studied by molecular dynamics (MD) simulation. A new approach to MD shock simulation is used, which enables one to consider a stationary shock front at rest and radically improves the quality of simulation. The profiles of flow variables and their fluctuations are calculated. The evolution of the velocity distribution function across the shock layer is calculated and compared with the bimodal distribution. The pair distribution function in the shock layer is determined. The surface tension associated with the shock wave is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Oxford: Pergamon Press, 1959.

    Google Scholar 

  2. H. W. Liepman, R. Narashima, and M. T. Chahine, Phys. Fluids 5, 1313 (1962).

    Google Scholar 

  3. D. Gilbarg and D. Paolucci, J. Ratl. Mech. Anal. 2, 617 (1953).

    MathSciNet  Google Scholar 

  4. I. E. Tamm, Tr. Fiz. Inst. Akad. Nauk SSSR 29, 317 (1965).

    Google Scholar 

  5. H. M. Mott-Smith, Phys. Rev. 82, 885 (1951).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. C. Muckenfuss, Phys. Fluids 5, 1325 (1962).

    Google Scholar 

  7. W. Fiszdon, R. Herczynski, and Z. Walenta, in Rarefied Gas Dynamics, edited by M. Becker and M. Fiebig, Porz-Wahn, DFVLR Pres, 1974, p. B23

  8. S. M. Yen, Annu. Rev. Fluid Mech. 16, 67 (1984).

    Article  ADS  MATH  Google Scholar 

  9. G. A. Bird, Molecular Gas Dynamics, Oxford: Clarendon Press, 1976.

    Google Scholar 

  10. G. Ya. Lyubarsky, Zh. Éksp. Teor. Fiz. 40, 1050 (1961) [Sov. Phys. JETP 13, 740 (1961)].

    Google Scholar 

  11. R. G. Barantsev, Zh. Éksp. Teor. Fiz. 42, 889 (1962) [Sov. Phys. JETP 15, 615 (1962)].

    MATH  Google Scholar 

  12. W. G. Hoover, Phys. Rev. Lett. 42, 1531 (1979).

    Article  ADS  Google Scholar 

  13. B. L. Holian, W. G. Hoover, and B. Moran, G. K. Straub, Phys. Rev. A 22, 2798 (1980); B. L. Holian, Phys. Rev. A 37, 2562 (1988).

    Article  ADS  Google Scholar 

  14. M. Koshi, T. Saito, H. Nagoya et al., Kayaku Gakkaishi 55, 229 (1994).

    Google Scholar 

  15. E. Salomons and M. Marechal, Phys. Rev. Lett. 69, 269 (1992).

    Article  ADS  Google Scholar 

  16. S. I. Anisimov and V. V. Zhakhovskii, JETP Lett. 57, 99 (1993).

    ADS  Google Scholar 

  17. D. W. Heerman, Computer Simulation Methods in Theoretical Physics, Berlin-New York: Springer-Verlag, 1986.

    Google Scholar 

  18. V. V. Zhakhovskii and S. I. Anisimov, Zh. Éksp. Teor. Fiz. 111, 1328 (1997) [JETP 84, 734 (1997)].

    Google Scholar 

  19. V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Thermodynamical Properties of Neon, Argon, Krypton, and Xenon, Berlin-New York: Hemisphere, 1988.

    Google Scholar 

  20. P. Resibois and M. De Lechner, Classical Kinetic Theory of Fluids, New York: J. Wiley and Sons, 1977.

    Google Scholar 

  21. A. G. Bashkirov, Phys. Fluids A 3, 960 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Oxford: Clarendon Press, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 66, No. 2, 91–96 (25 July 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhakhovskii, V.V., Nishihara, K. & Anisimov, S.I. Shock wave structure in dense gases. Jetp Lett. 66, 99–105 (1997). https://doi.org/10.1134/1.567510

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.567510

PACS numbers

Navigation