Skip to main content
Log in

Background component of methane concentration in surface air (Obninsk monitoring station)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We present measurement data from February 1998 to January 2014 obtained by Fourier spectroscopy for bulk methane concentrations in surface air samples. We have excluded the results of individual measurements of high methane concentrations arising at a temperature inversion and during fires to separate the monthly mean concentrations into the regional natural background concentration of methane and its anthropogenic addition. A seasonal concentration has been separated from the background concentration. Spectral analysis reveals a large number of composite oscillations of variations in the background methane concentra- tion with periods of 3 to 126 months. A model with the use of empirical parameters of these oscillations describes the temporal changes in the methane concentration with an error of less than 3%. The anthropogenic addition of CH4 in the atmosphere is largely of a random character. Over 16 years of observations, its increase was ~23.7 ppb, which has resulted in an increase in the total CH4 concentration by the same amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Migeotte, “Methane in Earth’s atmosphere,” J. Astrophys. 107, 400–403 (1948).

    Article  Google Scholar 

  2. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R. K. Pachauri and A. Reisinger (IPCC, Geneva, 2007).

    Google Scholar 

  3. I. L. Karol’ and A. I. Reshetnikov, “Changes in the content of greenhouse gases and aerosol in the atmosphere and their climatic impact,” in Evaluation Report “On Climate Changes and Their Consequences on the Territory of the Russian Federation”, Vol. 1: Climate Changes (VNIIGMI-MTsD, Moscow, 2008), Chap. 4, pp. 112–151 [in Russian].

    Google Scholar 

  4. N. M. Bazhin, Methane in the Environment. Analytical Review. Ser. Ecology, No. 93 (GPNTB SO RAN, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  5. V. A. Isidorov, Ecological Chemistry (Khimizdat, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  6. V. M. Kotlyakov, Collected Work in Six Volumes (2000–2004), Vol. 1: Glaciology of Antarctica (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  7. M. Bender, T. Sowers, and E. Brook, “Gases in ice cores,” Proc. Natl. Acad. Sci. U.S.A. 94 (16), 8343–8349 (2008). doi 10.1073/pnas.94.16.8343

    Article  Google Scholar 

  8. M. Rigby, R. G. Prinn, P. J. Fraser, et al., “Renewed growth of atmospheric methane,” Geophys. Res. Lett. 35, L22805 (2008).

    Article  Google Scholar 

  9. M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Analysis of methane total column variations in the atmosphere near St. Petersburg using ground-based measurements and simulations,” Izv., Atmos. Ocean. Phys. 51 (2), 177–185 (2015).

    Article  Google Scholar 

  10. E. J. Dlugokencky, S. Houweling, L. Bruhwiler, et al., “Atmospheric methane levels off: Temporary pause or a new steady state?,” Geophys. Res. Lett. 30, 1992 (2003). doi 10.1029/2003GL018126

    Article  Google Scholar 

  11. I. M. Bazhin, “Methane in the atmosphere,” Soros. Obraz. Zh. 6 (3), 52–57 (2000).

    Google Scholar 

  12. Yu. I. Baranov, E. L. Baranova, G. I. Bougrim, and F. V. Kashin, “Temporal variability of methane, carbon oxide and dioxide and dinitrogen oxide in surface air,” Proc. SPIE 4341, 438–442 (2000).

    Article  Google Scholar 

  13. F. V. Kashin, V. N. Aref’ev, Yu. I. Baranov, E. L. Baranova, G. I. Bugrim, and N. E. Kamenogradsky, “Variability of the methane content in the atmospheric surface layer and in the atmospheric column,” Izv., Atmos. Ocean. Phys. 40 (3), 356–361 (2004).

    Google Scholar 

  14. L. S. Rothman, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).

    Article  Google Scholar 

  15. I. B. Belikov, C. A. M. Brenninkmeijer, N. F. Elansky, and A. A. Ral’ko, “Methane, carbon monoxide, and carbon dioxide concentrations measured in the atmospheric surface layer over continental Russia in the TROICA experiments,” Izv., Atmos. Ocean. Phys. 42 (1), 46–59 (2006).

    Article  Google Scholar 

  16. M. V. Makarova, A. V. Poberovskii, K. N. Visheratin, and A. V. Polyakov, “Time variability of the total methane content in the atmosphere over the vicinity of St. Petersburg,” Izv., Atmos. Ocean. Phys. 45 (6), 723–730 (2009).

    Article  Google Scholar 

  17. M. Sasakawa, K. Shimoyama, T. Machida, et al., “Continuous measurements of methane from a tower network over Siberia,” Tellus 62B (5), 403–416 (2010).

    Article  Google Scholar 

  18. E. I. Grechko and A. V. Dzhola, “Spectroscopic measurements of the content of CO, CH4, and N2O in the atmospheric column of central Arctic (at SP-28 station),” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 26 (5), 547–550 (1990).

    Google Scholar 

  19. A. I. Reshetnikov, A. V. Zinchenko, N. N. Paramonova, V. I. Privalov, V. M. Ivakhov, and K. V. Kazakova, “Results of monitoring of main greenhouses gases at Arctic stations of the Russian Agency on Hydrometeorology and Environmental Monitoring,” Trudy GGO, No. 564, 223–240, (2011).

    Google Scholar 

  20. F. V. Kashin, N. N. Paramonova, and N. I. Privalov, “Results of monitoring of carbon dioxide and methane concentrations near the surface at Antarctic station of Novolazarevskaya in 2007–2009,” in Meteorological and Geophysical Studies, Ed. by G. V. Alekseev (Paulsen, Moscow, 2011), pp. 170–177 [in Russian].

    Google Scholar 

  21. NOAA/ESRL. http://www.esrl.noaa.gov/gmd/.

  22. Global Fire Monitoring Center, Freiburg, Germany. http://www.fire.uni-freiburg.de/current/globalfire.htm.

  23. http://typhoon-tower.obninsk.org/ru/.

  24. F. Kashin, “Variations of CO2 mixing ratios in the air near the ground in the European territory of Russia,” J. Environ. Sci. Eng. 2 (9), 531–536 (2013).

    Google Scholar 

  25. V. N. Aref’ev, N. E. Kamenogradsky, F. V. Kashin, and A. V. Shilkin, “Background component of carbon dioxide concentration in the near-surface air,” Izv., Atmos. Ocean. Phys. 50 (6), 576–582 (2014).

    Article  Google Scholar 

  26. A. A. Vinogradova, E. I. Fedorova, I. B. Belikov, et al., “Temporal variations in carbon dioxide and methane concentrations under urban conditions,” Izv., Atmos. Ocean. Phys. 43 (5), 651–663 (2007).

    Article  Google Scholar 

  27. D. J. Hofmann, J. H. Butler, and P. P. Tans, “A new look at atmospheric carbon dioxide,” Atmos. Environ. 43 (12), 2084–2086 (2009).

    Article  Google Scholar 

  28. M. A. K. Khalil, M. J. Shearer, and R. A. Rasmussen, “Methane Sinks Distribution,” in Atmospheric Methane: Sources, Sinks and Role in Global Change, Ed. by M. A. K. Khalil (Springer Verlag, Berlin, 1993), pp. 168–179.

    Chapter  Google Scholar 

  29. A. S. Ginzburg, A. A. Vinogradova, and E. I. Fedorova, “Some features of seasonal variations in the methane content in the atmosphere over Northern Eurasia,” Izv., Atmos. Ocean. Phys. 47 (1), 45–58 (2011).

    Article  Google Scholar 

  30. M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Annual cycle and long-term trend of the methane total column in the atmosphere over the St. Petersburg region,” Izv., Atmos. Ocean. Phys. 51 (4), 431–438 (2015).

    Article  Google Scholar 

  31. K. W. Thoning, P. P. Tans, and W. D. Komhyr, “Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC data, 1974–1985,” J. Geophys. Res., 94 (D6), 8549–8565 (1989).

    Article  Google Scholar 

  32. V. P. Borovikov and I. P. Borovikov, Statistica. Statistical Analysis and Processing of Data in Windows (Filin, Moscow, 1998) [in Russian].

    Google Scholar 

  33. Ch. K. Chui, An Introduction to Wavelets (Academic, San Diego, 1992; Mir, Moscow, 2001).

    Google Scholar 

  34. V. A. Rozhkov, Theory of Probability of Random Events, Variables, and Functions with Hydrometeorological Examples (Progress-Pogoda, St. Petersburg, 1996), Vol. 1 [in Russian].

  35. C. D. Keellng, T. P. Whorf, and M. Wahlen, and J. van der Plicht, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375 (6533), 666–670 (1995).

    Article  Google Scholar 

  36. A. S. Monin and Yu. A. Shishkov, “The 5-year cyclicity of global weather,” Dokl. Earth Sci. 358 (1), 128–131 (1998).

    Google Scholar 

  37. Yu. R. Rivin, “The 22-Year cycle of geomagnetic activity,” Int. J. Geomagn. Aeron. 1 (2), 111–116 (1999).

    Google Scholar 

  38. V. V. Ivanov, “Periodic weather and climate variations,” Phys.-Usp. 45 (7), 719–752 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Aref’ev.

Additional information

Original Russian Text © V.N. Aref’ev, R.M. Akimenko, F.V. Kashin, L.B. Upenek, 2016, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 1, pp. 42–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’ev, V.N., Akimenko, R.M., Kashin, F.V. et al. Background component of methane concentration in surface air (Obninsk monitoring station). Izv. Atmos. Ocean. Phys. 52, 37–44 (2016). https://doi.org/10.1134/S0001433815060031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815060031

Keywords

Navigation