Skip to main content
Log in

Surface Oscillations of a Free-Falling Droplet of an Ideal Fluid

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

According to observations, drops freely falling in the air under the action of gravity are deformed and oscillate in a wide range of frequencies and scales. A technique for calculating surface axisymmetric oscillations of a deformed droplet in the linear approximation under the assumption that the amplitude and wavelength are small when compared to the droplet diameter is proposed. The basic form of an axisymmetric droplet is chosen from observations. The calculation results for surface oscillations agree with recorded data on the varying shape of water droplets falling in the air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. S. Rayleigh, “On the capillary phenomena of jets,” Proc. R. Soc. London 29, 71–97 (1879).

    Article  Google Scholar 

  2. A. G. Gorelik and V. V. Sterlyadkin, “Effect of raindrop vibration on the polarization characteristics of a radio echo,” Izv. Akad. Nauk: Ser. Fiz. Atmos. Okeana 25 (9), 960–968 (1989).

    Google Scholar 

  3. V. V. Sterlyadkin, “Unexpected properties of raindrops,” Priroda, No. 3, 64–65 (1989).

    Google Scholar 

  4. V. V. Sterlyadkin, “Field measurements of precipitation drop vibrations,” Izv. Akad. Nauk: Ser. Fiz. Atmos. Okeana 24 (6), 613–621 (1988).

    Google Scholar 

  5. V. V. Sterlyadkin, “Measurement of resonance properties of vibrating drops,” Izv. Akad. Nauk: Ser. Fiz. Atmos. Okeana 18 (1), 98–101 (1982).

    Google Scholar 

  6. M. Szákall, S. K. Mitra, K. Diehl, and S. Borrmann, “Shapes and oscillations of falling raindrops—A review,” Atmos. Res. 97 (4), 416–425 (2010).

    Article  Google Scholar 

  7. C. W. Ulbrich, “Natural variations in the analytical form of the raindrop size distribution,” J. Clim. Appl. Meteorol. 22 (10), 1764–1775 (1984).

    Article  Google Scholar 

  8. K. J. Al-Jumily, R. B. Charlton, and R. G. Humphries, “Identification of rain and hail with circular polarization radar,” J. Appl. Meteorol. 31, 1075–1087 (1991).

    Article  Google Scholar 

  9. A. J. Illingworth, T. M. Blackman, and W. F. Goddard, “Improved rainfall estimates in convective storms using polarization diversity radar,” Hydrol. Earth Syst. Sci. 4 (4), 555–563 (2000).

    Article  Google Scholar 

  10. H. An, W. Yan, Y. Huang, W. Ai, Y. Wang, X. Zhao, and X. Huang, “GNSS measurement of rain rate by polarimetric phase shift: Theoretical analysis,” Atmosphere 7 (8), 101 (2016). doi 10.3390/atmos7080101

    Article  Google Scholar 

  11. A. I. Grigor’ev and S. O. Shiryaeva, “Electromagnetic radiation from linearly and nonlinearly oscillating charge drops,” Tech. Phys. 61 (12), 1885–1890 (2016).

    Article  Google Scholar 

  12. L. D. Landau and E. M. Lifshits, Theoretical Physics, vol. 6: Hydromechanics (Nauka, Moscow, 2015) [in Russian].

    Google Scholar 

  13. I. A. Lukovskii and M. A. Chernova, “Nelineinaya modal’naya teoriya kolebanii kapli,” Akust. Visn. 14 (3), 23–45 (2011).

    Google Scholar 

  14. T. Watanabe, “Non-linear oscillations and rotation of a liquid droplet,” Int. J. Geol. 4 (1), 5–13 (2010).

    Google Scholar 

  15. W. H. Reid, “The oscillation of the viscous liquid drop,” Q. Appl. Math. 18, 86–89 (1960).

    Article  Google Scholar 

  16. E. Hervieu, N. Coutris, and C. Boichon, “Oscillations of a drop in aerodynamic levitation,” Nucl. Eng. Des. 204 (1–3), 167–175 (2001).

    Article  Google Scholar 

  17. Yu. D. Chashechkin and V. E. Prokhorov, “Transformation of the bridge during drop separation,” J. Appl. Mech. Tech. Phys. 57 (3), 402–415 (2016).

    Article  Google Scholar 

  18. G. Korn and T. Korn, Mathematical handbook for Scientists and Engineers (McGraw Hill, New York, 1968; Nauka, Moscow, 1984).

    Google Scholar 

  19. A. I. Korshunov, “Oscillations of a water droplet separated from the connection,” Fluid Dyn. 50 (4), 585–589 (2015).

    Article  Google Scholar 

  20. T. G. Theofanous, “Aerobreakup of Newtonian and viscoelastic liquids,” Annu. Rev. Fluid Mech. 43 (1), 661–690 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kistovich.

Additional information

Original Russian Text © A.V. Kistovich, Yu.D. Chashechkin, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kistovich, A.V., Chashechkin, Y.D. Surface Oscillations of a Free-Falling Droplet of an Ideal Fluid. Izv. Atmos. Ocean. Phys. 54, 182–188 (2018). https://doi.org/10.1134/S0001433818020123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818020123

Keywords

Navigation