Skip to main content
Log in

On transforms reducing one-dimensional systems of shallow-water to the wave equation with sound speed c 2 = x

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We obtain point transformations for three one-dimensional systems: shallow-water equations on a flat and a sloping bottom and the system of linear equations obtained by formal linearization of shallow-water equations on a sloping bottom. The passage of these systems to the Carrier-Greenspan parametrization is also obtained. For linear shallow-water equations on a sloping bottom, we obtain the solution in the form of a traveling wave with variable velocity. We establish the relationship between the resulting solution and the solution of the two-dimensional wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Stoker, Water Waves: The Mathematical Theory with Applications, in Wiley Classics Lib. (John Wiley & Sons, New York, 1992).

    MATH  Google Scholar 

  2. E. N. Pelinovsky, Hydrodynamics of Tsunami Waves, Chapter 1: Waves in Geophysical Fluids, Eds. J. Grue J. and K. Trulsen, CISM Courses and Lectures, No. 489 (Springer-Verlag, 2006), pp. 1–48 (Hydrodynamics of Tsunami Waves (IPF RAN, Nizhnii Novgorod, 1996) [in Russian].)

  3. R. Courant, Methods of Mathematical Physics, Vol. II: Partial Differential Equations (Interscience Publ., New York, 1962).

    Google Scholar 

  4. G. F. Carrier and H. P. Greenspan, “Water waves of finite amplitude on a sloping beach,” J. Fluid Mech. 4(1), 97–109 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Yu. Dobrokhotov and B. Tirozzii, “Localized solutions of one-dimensional non-linear shallow-water equations with velocity c = \( c = \sqrt x \),” UspekhiMat. Nauk 65(1(391)), 185–186 (2010) [RussianMath. Surveys 65 (1), 177–179 (2010)].

    Article  Google Scholar 

  6. S. B. Medvedev, “Zero-order conservation laws for one-dimensional hydrodynamic equations with an external force,” Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 10(1), 70–88 (2010).

    MATH  Google Scholar 

  7. I. Didenkulova and E. Pelinovsky, “Rogue waves in nonlinear hyperbolic systems (shallow-water framework),” Nonlinearity 24(3), R1–R18 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. M. Smirnov, Problems in Equations of Mathematical Physics (Noordhoff, 1966; Nauka, Moscow, 1975).

    Google Scholar 

  9. M. M. Smirnov, Equations ofMixed Type (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  10. I. L. Karol’, “On the theory of boundary-value problems for an equation of mixed elliptic-hyperbolic type,” Mat. Sb. 38(80)(3), 261–282 (1956).

    MathSciNet  Google Scholar 

  11. S. K. Zhdanov and B. A. Trubnikov, Quasigaseous Unstable Media (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  12. B. A. Trubnikov, Plasma Theory (Énergoatomizdat, Moscow, 1996) [in Russian].

    Google Scholar 

  13. A. D. Polyanin, Handbook of Linear Equations of Mathematical Physics (Fizmatlit, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  14. G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics: Theory and Applications to Geophysical Hydrodynamics (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  15. S. Yu. Dobrokhotov and S. Ya. Sekerzh-Zen’kovich, “A class of exact algebraic localized solutions of the multidimensional wave equation,” Mat. Zametki 88(6), 942–945 (2010) [Math. Notes 88 (6), 894–897 (2010)].

    Article  MathSciNet  Google Scholar 

  16. E. N. Pelinovsky and R. Kh. Mazova, “Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles,” Natural Hazards 6(3), 227–249 (1992).

    Article  Google Scholar 

  17. T. Vukašinac and P. Zhevandrov, “Geometric asymptotics for a degenerate hyperbolic equation,” Russ. J. Math. Phys. 9(3), 371–381 (2002).

    MathSciNet  MATH  Google Scholar 

  18. S. Yu. Dobrokhotov, V. E. Nazaikinskii, and B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity: I,” Russ. J. Math. Phys. 17(4), 434–447 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. S. Minenkov, “Asymptotics of the solutions of the one-dimensional nonlinear system of equations of shallow water with degenerate velocity,” Mat. Zametki 92(5), 721–730 (2012) [Math. Notes 92 (5), 664–672 (2012)].

    Article  Google Scholar 

  20. L. V. Ovsyannikov, Lectures on the Fundamentals of Gas Dynamics (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Dobrokhotov.

Additional information

Original Russian Text © S. Yu. Dobrokhotov, S. B. Medvedev, D. S. Minenkov, 2013, published in Matematicheskie Zametki, 2013, Vol. 93, No. 5, pp. 716–727.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrokhotov, S.Y., Medvedev, S.B. & Minenkov, D.S. On transforms reducing one-dimensional systems of shallow-water to the wave equation with sound speed c 2 = x . Math Notes 93, 704–714 (2013). https://doi.org/10.1134/S0001434613050064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434613050064

Keywords

Navigation