Skip to main content
Log in

On the Monge–Kantorovich problem with additional linear constraints

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The Monge–Kantorovich problem with the following additional constraint is considered: the admissible transportation plan must become zero on a fixed subspace of functions. Different subspaces give rise to different additional conditions on transportation plans. The main results are stated in general form and can be carried over to a number of important special cases. They are also valid for the Monge–Kantorovich problem whose solution is sought for the class of invariant or martingale measures. We formulate and prove a criterion for the existence of an optimal solution, a duality assertion of Kantorovich type, and a necessary geometric condition on the support of the optimal measure similar to the standard condition for c-monotonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Bogachev and A. V. Kolesnikov, “The Monge-Kantorovich problem: achievements, connections, and perspectives,” UspekhiMat. Nauk 67 (5), 3–110 (2012) [RussianMath. Surveys 67 (5), 785–890 (2012)].

    Article  MathSciNet  Google Scholar 

  2. C. Villani, Optimal Transport.Old and New, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin, 2009), Vol. 338

  3. M. Beiglboeck and C. Griessler, An Optimality Principle with Applications in Optimal Transport, http://arxiv.org/abs/1404.7054 (2014).

    Google Scholar 

  4. D. Hobson, “The Skorokhod embedding problem and model-independent bounds for option prices,” in Paris–Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math. (Springer-Verlag, Berlin, 2011), Vol. 2003, pp. 267–318.

    Article  MathSciNet  Google Scholar 

  5. M. Beiglboeck, P. Henry-Labordère, and F. Penkner, “Model-independent bounds for option prices is a mass transport approach,” Finance Stoch. 17 (3), 477–501 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Beiglboeck and N. Juillet, On a Problem of Optimal Transport Under Marginal Martingale Constraints, http://arxiv.org/abs/1208.15091208.1509 (2012).

    Google Scholar 

  7. A. O. Lopes and J. K. Mengue, “Duality theorems in ergodic transport,” J. Stat. Physics 149 (5), 921–942 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Moameni, Invariance Properties of the Monge–Kantorovich Mass Transport Problem, http://arxiv.org/abs/1311.7051 (2013).

    Google Scholar 

  9. A.M. Vershik, P. B. Zatitskiy, and F. V. Petrov, “Virtual continuity ofmeasurable functions of several variables and embedding theorems,” Funct. Anal. Appl. 47 (3), 165–173 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. T. Rachev and L. Ruschendorf, Mass Transportation Problems, Vol. I: Theory, Vol. II: Applications, in Probab. Appl. (N. Y.) (Springer-Verlag, New York, 1998).

    Google Scholar 

  11. H. G. Kellerer, “Duality theorems for marginal problems,” Z. Wahrsch. Verw. Gebiete 67 (4), 399–432 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  12. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin, 1996), Vol. 314.

  13. A. V. Kolesnikov and D. A. Zaev, Optimal Transportation of Processes with Infinite Kantorovich Distance: Independence and Symmetry, http://arxiv.org/abs/1303.7255 (2013).

    Google Scholar 

  14. D. B. Bukin, “On theMonge and Kantorovich problems for distributions of diffusion processes,” Math. Notes 96 (5), 864–870 (2014).

    Article  MathSciNet  Google Scholar 

  15. V. I. Bogachev, Measure Theory (Springer-Verlag, Berlin, 2007), Vol. I, II.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zaev.

Additional information

Original Russian Text © D. A. Zaev, 2015, published in Matematicheskie Zametki, 2015, Vol. 98, No. 5, pp. 664–683.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaev, D.A. On the Monge–Kantorovich problem with additional linear constraints. Math Notes 98, 725–741 (2015). https://doi.org/10.1134/S0001434615110036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615110036

Keywords

Navigation