Skip to main content
Log in

Vanishing Ideals over Finite Fields

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Let \(\mathbb{F}_{q}\) be a finite field, let \(\mathbb{X}\) be a subset of the projective space ℙs−1 over \(\mathbb{F}_{q}\) parametrized by rational functions, and let I(\((\mathbb{X})\)) be the vanishing ideal of \(\mathbb{X}\). The main result of this paper is a formula for I(\((\mathbb{X})\)) that will allow us to compute (i) the algebraic invariants of I(\((\mathbb{X})\)) and (ii) the basic parameters of the corresponding Reed–Muller-type code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Harris, Algebraic Geometry. A First Course (Springer-Verlag, New York, 1992).

    Book  MATH  Google Scholar 

  2. M. González-Sarabia, C. Rentería, and H. Tapia-Recillas, “Reed-Muller-type codes over the Segre variety,” Finite Fields Appl. 8 (4), 511–518 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Sauer, “Polynomial interpolation in several variables: lattices, differences, and ideals,” in Topics in Multivariate Approximation and Interpolation (Stud. Comput. Math., Elsevier B. V., Amsterdam, 2006), Vol. 12, pp. 191–230.

    Chapter  Google Scholar 

  4. D. Grayson and M. Stillman, Macaulay 2, 1996. Available via anonymous ftp from math.uiuc.edu.

  5. C. Rentería, A. Simis, and R. H. Villarreal, “Algebraic methods for parameterized codes and invariants of vanishing ideals over finite fields,” Finite Fields Appl. 17 (1), 81–104 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms (Springer-Verlag, New York, 1992).

    Book  MATH  Google Scholar 

  7. M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2 (Springer-Verlag, Berlin, 2005).

    MATH  Google Scholar 

  8. M. Tsfasman, S. Vladut, and D. Nogin, Algebraic Geometric Codes: Basic Notions (American Mathematical Society, Providence, RI, 2007).

    Book  MATH  Google Scholar 

  9. H. Matsumura, Commutative Ring Theory (Cambridge University Press, Cambridge, 1986).

    MATH  Google Scholar 

  10. G. M. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra (Springer, Berlin, 2008).

    MATH  Google Scholar 

  11. R. H. Villarreal, Monomial Algebras (CRC Press, Boca Raton, FL, 2015).

    MATH  Google Scholar 

  12. N. Jacobson, Basic Algebra I (W. H. Freeman and Company, New York, 1996).

    MATH  Google Scholar 

  13. N. Alon, “Combinatorial Nullstellensatz,” Combin. Probab. Comput. 8 (1), 7–29 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Martínez-Bernal, Y. Pitones, and R. H. Villarreal, “Minimum distance functions of graded ideals and Reed–Muller-type codes,” J. Pure Appl. Algebra 221 (2), 251–275 (2017).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Tochimani or R. H. Villarreal.

Additional information

The article was submitted by the authors for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tochimani, A., Villarreal, R.H. Vanishing Ideals over Finite Fields. Math Notes 105, 429–438 (2019). https://doi.org/10.1134/S0001434619030131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619030131

Keywords

Navigation