Skip to main content
Log in

Burning-rate behavior in aluminized wide-distribution AP composite propellants

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Burning-rate behavior of aluminized, wide-distribution ammonium-perchlorate (AP), hydroxyl-terminated-polybutadiene (HTPB) binder composite propellants, both 2D laminates and 3D particulate propellants, is investigated experimentally. Very fine (2-µm) AP (FAP) is used at a high FAP/binder ratio (75/25) with either coarse (>200 µm) AP (CAP) particles (3D particulate propellants) or pressed AP slabs (simulating CAP particles in over-ventilated, 2D laminates). The results indicate that, while aluminum does not significantly alter the AP/binder flame structure, it can either increase the burning rate via radiative feedback or decrease it via inert heat-sink effects, depending on pressure (competing conductive heat feedback). Otherwise, the AP/binder flame structure is similar to that found previously for non-aluminized laminates, with minor differences. The FAP/HTPB-matrix burns with a one-dimensional premixed flame not hot enough to ignite aluminum, but hot enough to self-deflagrate if a modest amount of an external radiant flux (in the case considered, supplied by aluminum ignited downstream by the CAP/matrix flame) is present. The CAP/matrix interaction flame burns in either a split-diffusion or merged, partially premixed mode, depending on pressure and fuel-layer thickness. A correlation between the burningrate pressure exponent and the CAP/matrix flame-regime pressure dependence is found in terms of the Peclet number in accordance with a simple, conserved-scalar (mixture fraction) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tanaka, Y. Seki, and K. Urakawa, “Unstable combustion induced by fine AP particles in composite propellants,” in: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper No. 2008-4959 (2008).

  2. K. M. Ide, “Composite propellants with bi-plateau burning behavior,” Systems Sciences Laboratory, Report No. DSTO-GD-0344 (2002).

  3. E. W. Price, S. R. Chakravarthy, R. K. Sigman, and J. M. Freeman, “Pressure dependence of burning rate of ammonium perchlorate-hydrocarbon binder solid propellants,” in: 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper No. 97-3106 (1997).

  4. J. M. Freeman, E. W. Price, S. R. Chakravarthy, and R. K. Sigman, “Contribution of monomodal AP/HC propellants to bimodal plateau-burning propellants,” in: 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper No. 98-3388 (1998).

  5. J. M. Freeman, R. Jeenu, E. W. Price, and R. K. Sigman, “Effect of matrix variables on bimodal propellant combustion,” in: 35th JANNAF Combustion Meeting, 2 (1998), Chemical Propulsion Information Agency, Publ. No. 680, pp. 567–579.

    Google Scholar 

  6. S. R. Chakravarthy, E. W. Price, R. K. Sigman, and J. M. Seitzman, “Plateau burning behavior of ammonium perchlorate sandwiches and propellants at elevated pressures,” J. Propul. and Power, 19, No. 1, 56–65 (2003).

    Article  Google Scholar 

  7. S. R. Chakravarthy, J. M. Seitzman, E. W. Price, and R. K. Sigman, “Intermittent burning of ammonium perchlorate-hydrocarbon binder monomodal matrixes, sandwiches, and propellants,” J. Propul. Power, 20, No. 1, 101–109 (2004).

    Article  Google Scholar 

  8. S. Banerjee and S. R. Chakravarthy, “Ammonium perchlorate-based composite solid propellant formulations with plateau burning rate trends,” Combust., Expl., Shock Waves, 43, No. 4, 435–441 (2007).

    Article  Google Scholar 

  9. N. Mansu, V. Srinivas, and S. R. Chakravarthy, “Coupling of leading edge flames in the combustion zone of composite solid propellants,” in: 45th AIAA Aerospace Sciences Meeting, AIAA Paper No. 2007-780 (2007).

  10. M. Kohga, “Burning rate characteristics of ammonium perchlorate-based composite propellants using bimodal ammonium perchlorate,” J. Propul. Power, 24, No. 3, 499–506 (2008).

    Article  Google Scholar 

  11. X. Jia and R. W. Bilger, “The Burke-Schumman diffusion flame with zero net flux boundary conditions,” Combust. Sci. Technol., 99, 371–376 (1994).

    Article  Google Scholar 

  12. R. W. Bilger, X. Jia, J. D. Li, and T. T. Nguyen, “Theoretical and experimental study of composite solid propellant combustion,” Combust. Sci. Technol., 115, 1–39 (1996).

    Article  Google Scholar 

  13. R. P. Fitzgerald and M. Q. Brewster, “Laminate propellant combustion (review). 1. Experimental investigations,” Combust., Expl.. Shock Waves, 41, No. 6, 693–708 (2005).

    Article  Google Scholar 

  14. R. P. Fitzgerald and M. Q. Brewster, “Laminate propellant combustion (review). 2. Theoretical investigations,” Combust., Expl., Shock Waves, 42, No. 1, 1–18 (2006).

    Article  Google Scholar 

  15. T. Parr and D. Hanson-Parr, “Optical diagnostics of solid-propellant flame structures,” in: Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, AIAA, Ch. 2.5, pp. 381–411 (2000).

  16. B. T. Chorpening, G. M. Knott, and M. Q. Brewster, “Flame structure and burning rate of ammonium perchlorate/hydroxyl-terminated polybutadiene propellant sandwiches,” Proc. Combust. Inst., 28, 847–853 (2000).

    Article  Google Scholar 

  17. B. T. Chorpening and M. Q. Brewster, “Emission imaging of AP/HTPB propellant sandwich combustion,” Combust. Sci. Technol., 174, No. 4, 39–60 (2002).

    Article  Google Scholar 

  18. R. P. Fitzgerald and M. Q. Brewster, “Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate,” Combust. Flame, 136, No. 3, 313–326 (2004).

    Article  Google Scholar 

  19. R. P. Fitzgerald and M. Q. Brewster, “Infrared imaging of AP/HTPB laminate propellant flames,” Combust. Flame, 154, 660–670 (2008).

    Article  Google Scholar 

  20. M. Q. Brewster and J. C. Mullen, “Flame structure in aluminized wide-distribution AP composite propellants,” Combust. Flame, 157, No. 12, 2340–2347 (2010).

    Article  Google Scholar 

  21. J. C. Mullen and M. Q. Brewster, “Reduced agglomeration of aluminum in wide-distribution composite propellants,” J. Propul. Power, (2011).

  22. B. E. Hardt and M. Q. Brewster, “Influence of metal agglomeration and heat feedback on composite propellant burning rate,” J. Propul. Power, 7, No. 6, 1076–1078 (1991).

    Article  Google Scholar 

  23. A. Ishihara, M. Q. Brewster, T. A. Sheridan, and H. Krier, “The influence of radiative heat feedback on burning rate of aluminized propellants,” Combust. Flame, 84, Nos. 1–2, 141–153 (1991).

    Article  Google Scholar 

  24. A. Ishihara and M. Q. Brewster, “Combustion studies of boron, magnesium, and aluminum composite propellants,” Combust. Sci. Techol., 87, Nos. 1–6, 275–290 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Q. Brewster.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 2, pp. 81–92, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brewster, M.Q., Mullen, J.C. Burning-rate behavior in aluminized wide-distribution AP composite propellants. Combust Explos Shock Waves 47, 200–208 (2011). https://doi.org/10.1134/S0010508211020092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211020092

Key words

Navigation