Skip to main content
Log in

Structural Transformations in Aluminum Cylindrical Shells under Dynamic Loading

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes the structural studies of hollow cylindrical shells made of D16 and Al-Mn aluminum alloys, loaded by sliding detonation. Explosive loading conditions for the complete convergence and closure of shells are established. Light optics scanning electron microscopy, and transmission electron microscopy are applied to study the structural and phase transformations in shells under shock wave loading. The relation of composition, structure, and mechanical characteristics of alloys with their behavior under the action of shock loading is shown. There are several scenarios of convergence of shells, depending on their composition and loading conditions—from complete and steady convergence to multiple spalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Kanel, S. V. Razoryonov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  2. N. I. Tatyushkin and Yu. A. Trishin, “Some Effects Which Arise in Connection with the Explosive Squeezing of a Viscous Cylindrical Shell,” Prikl. Mekh. Tekh. Fiz. 19 (3), 99–112 (1978) [J. Appl. Mech. Tech. Phys. 19 (3), 362–371 (1978)].

    Google Scholar 

  3. V. A. Arinin, V. V. Burtsev, A. L. Mikhailov, et al., “Experimental and Computational Study of Quasispherical Compression of a Copper Shell Loaded by the Detonation of a Plastic Explosive Layer,” Fiz. Goreniya Vzryva 51 (5), 112–120 (2015) [Combust., Expl., Shock Waves 51 (5), 611–618 (2015)].

    Google Scholar 

  4. E. A. Kozlov, S. A. Brichikov, D. S. Boyarnikov, et al., “Special Features in Convergence Dynamics of Steel Shells under Their Explosive Loading. Results of Laser-Interferometric Measurements,” Fiz. Metall. Met-alloved. 112 (4), 412–428 (2011) [Phys. Metals Metal-logr. 112 (4), 389–404 (2011)].

    Article  Google Scholar 

  5. M. A. Anoshin, L. Ya. Gabzetdinova, E. A. Kozlov, et al., “Numerical Simulation of Fracture in Experiments with Compressed Shells,” Defor. Razrush. Mater. 2012 (4), 23–27 (2012) [Russian Metallurgy (Metally) 2012 (4), 269–273 (2012)].

    Google Scholar 

  6. V. A. Ogorodnikov, A. G. Ivanov, V. V. Mishukov, et al., “Impulsive Collapse of Liquid-Filled Cylindrical Steel Shells,” Fiz. Goreniya Vzryva 33 (1), 122–130 (1997) [Combust., Expl., Shock Waves 33 (1), 103–110 (1997)].

    Google Scholar 

  7. V. S. Glazkov, O. N. Ignatova, A. N. Malyshev, et al., “Method for Investigating the High-Rate Deformation of Metals at Micro- and Mezoscale Levels,” Fiz. Mezomekh. 13 (3), 61–68 (2010).

    Google Scholar 

  8. E. A. Notkina, A. V. Chizhov, and A. A. Shmidt, “Simulation of Fracture of Elastic-Plastic Materials Allowing for Phase Transition,” Pis’ma Zh. Tekh. Fiz. 24 (18), 91–95 (1998).

    Google Scholar 

  9. V. A. Arinin, V. V. Burtsev, V. V. Domnichev, et al., “Studying the Dynamics of the Development of a Cavity in a Solid Aluminum Sphere under Quasispherical Explosive Loading,” in XIII Khariton Thematic Scientific Readings: Proc. of the Int. Conf. (Inst. of Exp. Phys., Sarov, 2011).

    Google Scholar 

  10. B. L. Glushak, S. A. Novikov, L. M. Sinitsyna, and N. A. Yukina, “Deformation of Metal Spheres by Quasi-spherical Shock Waves,” Alter. Energ. Ekol., No. 6 (26), 30–32 (2005).

    Google Scholar 

  11. E. A. Kozlov, I. G. Brodova, D. V. Bashlykov, et al., “Structure, Phase Composition, and Properties of Promising Al Alloys with Ti and Zr after Their High-Rate Deformation in Solid and Liquid States,” Fiz. Met-all. Metalloved. 87 (3), 34–45 (1999).

    Google Scholar 

  12. E. A. Kozlov, G. V. Kovalenko, B. V. Litvinov, et al., “Deformation and Fracture of 60KhZG8N8F Austenitic Steel in Spherical Stress Waves,” Dokl. Akad. Nauk 358 (2), 189–192 (1998).

    Google Scholar 

  13. I. V. Khomskaya, V. I. Zel’dovich, B. V. Litvinov, and N. P. Purygin, “ Strain Localization Effects in Alloys Based on Copper, Titanium, and Iron, Loaded by Converging Shock Waves,” Fiz. Metall. Metalloved. 98 (4), 88–95 (2004).

    Google Scholar 

  14. V. I. Zel’dovich et al., “Deformation- and Temperature-Related Processes that Occur upon the Collapse of a Thick Cylindrical Shell Made of Steel 20,” Fiz. Metall. Metalloved. 116 (3), 300–308 (2015) [Phys. Metals Met-allogr. 116 (3), 285–292 (2015)].

    Google Scholar 

  15. I. G. Brodova et al., “Change in the Structure and the Properties of Cylindrical Alloy AMg6 Shells in Loading by Glancing Detonation Waves,” Deform. Razr. Mater. 2018 (1), 23–27 (2012) [Russian Metallurgy (Metally) 2018 (1), 923–928 (2018)].

    Google Scholar 

  16. Yu. A. Trishin, “Effect of Energy Dissipation on the Shaped-Charge Flow Regime,” Prikl. Mekh. Tekh. Fiz. 41 (4), 3–11 (1978) [J. Appl. Mech. Tech. Phys. 41 (4), 577–584 (1978)].

    MATH  Google Scholar 

  17. L. F. Mondo’fo, Aluminum Alloys: Structure and Properties (Butterworths, 1976).

    Google Scholar 

  18. Aluminum: Properties and Physical Metallurgy, Ed. by J. E. Hatch (ASM International, 1984).

  19. M. V. Mal’tsev, T. A. Barsukova, and F. A. Borin, Metallography of Nonferrous Metals and Alloys (Gos. Nauch.-Tekh. Izd. Lit. Chern. Tsv. Metallurg., Moscow, 1960) [in Russian].

  20. E. I. Zababakhin and I. E. Zababakhin, Unlimited Cumulation Phenomena (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  21. M. P. Bondar’ and L. A. Merzhievskii, “Evolution of the Metal Microstructure and Conditions of Strain Localization under High-Strain-Rate Loading,” Fiz. Goreniya Vzryva 42 (3), 122–130 (2006) [Combust., Expl., Shock Waves 42 (3), 356–365 (2006)].

    Google Scholar 

  22. A. F. Belikova, S. N. Buravova, Yu. A. Gordopolov, et al., “Strain Localization and Its Relation to a Deformed State of the Material,” Zh. Tekh. Fiz. 83 (2), 153–155 (2013).

    Google Scholar 

  23. A. N. Petrova, H. Radziszewska, L. Kaczmarek, et al., “Influence of Megaplastic Deformation on the Structure and Hardness of Al-Cu-Mg Alloy after Aging,” Fiz. Metall. Metalloved. 117 (12), 1288–1295 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Brodova.

Additional information

Original Russian Text © A.V. Koval’, I.G. Shirinkina, A.N. Petrova, I.G. Brodova, E.B. Smirnov, E.V. Shorokhov.

Published in Fizika Goreniya i Vzryva, Vol. 55, No. 4, pp. 82–91, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval’, A.V., Shirinkina, I.G., Petrova, A.N. et al. Structural Transformations in Aluminum Cylindrical Shells under Dynamic Loading. Combust Explos Shock Waves 55, 447–455 (2019). https://doi.org/10.1134/S0010508219040117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219040117

Keywords

Navigation