Skip to main content
Log in

Automatic Lineament Extraction Method in Mineral Exploration Using CANNY Algorithm and Hough Transform

  • Published:
Geotectonics Aims and scope

Abstract

Copper mineralization in Kahang porphyry mining district as a tectonically active region in the center of Iran, at the middle of Urmia–Dokhtar magmatic assemblage (UDMA), has been drastically controlled by structural lineaments. Determination of these footprint features is a good guide to identify the location of ore occurrences. One way to recognize lineaments is to process satellite imagery along with geophysical data. Although the visual extraction of lineaments from such data set is the most common method, automatic methods for detecting lineaments can highly reduce user errors and runtime. The most efficient automated methods in this regard are those that simultaneously take edge detection filters with lineament extraction algorithms into consideration. In this work, the CANNY algorithm was employed as an edge-detector filter at first and later Hough transform was used to extract linear features from satellite imagery and geophysical magnetometry data. The proposed methods were implemented on the high-resolution imagery data collected by QuickBird satellite along with ground-based magnetometry data to extract the shallow and deep-seated lineaments. After investigating and plotting this structural controller in a map, the dominant orientation was in the NE–SW direction perpendicular to the UDMA. Generated lineament density map also indicated that the eastern, southeast, and western portions of the area had high potential for porphyry copper mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. M. A. A. Abarca, MS Thesis (Enschede, Netherlands, 2006).

  2. M. Abedi and A. Bahroudi, “A geophysical potential field study to image the Makran subduction zone in SE of Iran,” Tectonophysics 688, 119–134 (2016).

    Google Scholar 

  3. M. Abedi, F. Dominique, S. G. R. Devriese, and D. W. Oldenburg, “Potential field signatures along the Zagros collision zone in Iran,” Tectonophysics 722, 25–42 (2018).

    Google Scholar 

  4. M. Abedi and B. Oskooi, “A combined magnetometry and gravity study across Zagros orogeny in Iran,” Tectonophysics 664, 164–175 (2015).

    Google Scholar 

  5. S. Z. Afshooni, H. Mirnejad, D. Esmaeily, and H. Asadi Haroni, “Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran,” Ore Geol. Rev. 54, 214–232 (2013).

    Google Scholar 

  6. P. Afzal, H. Harati, Y. Fadakar, and A. B. Yasrebi, “Application of spectrum-area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran,” Geochemistry 73, 533–543 (2013).

    Google Scholar 

  7. P. Afzal, A. Khakzad, P. Moarefvand, N. Rashidnejad Omran, B. Esfandiari, and Y. Fadakar, “Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran,” J. Geochem. Explor. 104, 34–46 (2010).

  8. F. Al-Obeidat, L. Feltrin, and F. Marir, “Cloud-based lineament extraction of topographic lineaments from NASA shuttle radar topography mission data,” Proc. Comput. Sci. 83, 1250–1255 (2016).

    Google Scholar 

  9. D. Argialas and O. D. Mavrantza, “Comparison of edge detection and Hough transform techniques for the extraction of geologic features,” Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. 34, 790–795 (2004).

    Google Scholar 

  10. D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recognit. 13, 111–122 (1981).

    Google Scholar 

  11. F. Berberian and M. Berberian, “Tectono-plutonic episodes in Iran,” in Zagros–Hindu Kush–Himalaya: Geodynamic Evolution, Vol. 3 of Am. Geophys. Union, Geodyn. Ser., Ed. by H. K. Gupta and F. M. Delany (Am. Geophys. Union, Washington, DC, 1981), pp. 5–32.

    Google Scholar 

  12. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  13. R. Chaabouni, S. Bouaziz, H. Peresson, and J. Wolfgang, “Lineament analysis of South Jenein Area (Southern Tunisia) using remote sensing data and geographic information system,” Egypt. J. Remote Sens. Space Sci. 15, 197–206 (2012).

    Google Scholar 

  14. G. R. J. Cooper and D. R. Cowan, “Edge enhancement of potential-field data using normalized statistics,” Geophysics 71 (3), 3–6 (2008).

    Google Scholar 

  15. G. R. J. Cooper and D. R. Cowan, “Enhancing potential field data using filters based on the local phase,” Comput. Geosci. 32, 1585–1591 (2006).

    Google Scholar 

  16. S. Corgne, R. Magagi, M. Yergeau, and D. Sylla, “An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS,” Remote Sens. Environ. 114, 1863–1875 (2010).

    Google Scholar 

  17. R. O. Duda and P. E. Hart, “Use of the Hough transform to detect lines and cures in pictures,” Commun. Assoc. Comput. Mach. 15, 11–15 (1972).

    Google Scholar 

  18. F. J. F. Ferreira, J. De Souza, A. D. B. S. Bongiolo, and L. G. De Castro, “Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle,” Geophysics 78 (3), 33‒41 (2013).

    Google Scholar 

  19. N. C. Fitton and S. J. D. Cox, “Optimising the application of the Hough transform for automatic feature extraction from geoscientific images,” Comput. Geosci. 24, 933–951 (1998).

    Google Scholar 

  20. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, N.J., 2008).

    Google Scholar 

  21. P. Gustafsson, “SPOT satellite data for exploration of fractured aquifers in a semi-arid area in southeastern Botswana,” Hydrogeol. J. 2 (2), 9–18, (1994).

    Google Scholar 

  22. M. Han, X. Yang, and E. Jiang, “An Extreme Learning Machine based on Cellular Automata of edge detection for remote sensing images,” Neurocomputing 198, 27–34 (2016).

    Google Scholar 

  23. M. Hashim, S. Ahmad, M. A. M. Johari, and A. Beiranvandpur, “Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery,” Adv. Space Res. 51, 874–890 (2013).

    Google Scholar 

  24. P. C. Hough, U.S. Patent No. 3 069 r654 (1962).

  25. L. Q. Hung, O. Batelaan, and F. de Smedt, “Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam,” Remote Sens. Environ. Monitor., GIS Appl., Geol. V, Proc. 5983 (2005). https://doi.org/10.1117/12.627699

  26. S. Janoriya and P. M. P. Parsai, “Critical review on edge detection techniques in spatial domain on low illumination images,” Int. J. Comput. Sci. Trends Technol. 5, 86–90 (2017).

    Google Scholar 

  27. A. Joly, A. Porwal, and T. C. McCuaig, “Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis,” Ore Geol. Rev. 48, 349–383 (2012).

    Google Scholar 

  28. M. Juneja and P. S. Sandhu, “Designing of robust image steganography technique based on LSB insertion and encryption,” ARTCOM'09: International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, India,2009, pp. 302–305. https://doi.org/10.1109/ARTCom.2009.228

  29. K. Karantzalos and D. Argialas, “Improving edge detection and watershed segmentation with anisotropic diffusion and morphological levellings,” Int. J. Remote Sens. 27, 5427–5434 (2006).

    Google Scholar 

  30. A. Karnieli, A. Meisels, L. Fisher, and Y. Arkin, “Automatic extraction and evaluation of geological linear features from digital remote sensing data using a Hough transform,” Photogramm. Eng. Remote Sens. 62, 525–531 (1996).

    Google Scholar 

  31. K. Koike, S. Nagano, and M. Ohmi, “Lineament analysis of satellite images using a Segment Tracing Algorithm (STA),” Comput. Geosci. 21, 1091–1104 (1995).

    Google Scholar 

  32. A. A. Masoud and K. Koike, “Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data,” ISPRS J. Photogramm. Eng. Remote Sens. 66, 818–832 (2011).

    Google Scholar 

  33. O. D. Mavrantza and D. P. Argialas, “Edge detection techniques for extracting linear information in an urban/peri-urban environment,” Spatial Information Management toward Legalizing Informal Urban Development, FIG Commission 3 Workshop, Athens, Greece,2007.

  34. N. McQuarrie, J. M. Stock, C. Verdel, and B. P. Wernicke, “Cenozoic evolution of Neotethys and implications for the causes of plate motions,” Geophys. Res. Lett. 30 (20), 6-1–6-6 (2003).

  35. H. G. Miller and V. Singh, “Potential field tilt a new concept for location of potential field sources,” J. Appl. Geophys. 32, 213–217 (1994).

    Google Scholar 

  36. M. E. Mostafa and F. A. Zakir, “New enhancement techniques for azimuthal analysis of lineaments for detecting tectonic trends in and around the Afro-Arabian Shield,” Int. J. Remote Sens. 17, 2923–2943 (1996).

    Google Scholar 

  37. S. S. Nalbant and O. Alptekin, “The use of Landsat Thematic Mapper imagery for analyzing lithology and structure of Korucu-Duğla area in western Turkey,” Int. J. Remote Sens. 16, 2357–2374 (1995).

    Google Scholar 

  38. L. J. Quackenbush, “A review of techniques for extracting linear features from imagery,” Photogramm. Eng. Remote Sens. 70, 1383–1392 (2004).

    Google Scholar 

  39. M. Rahnama and R. Gloaguen, “TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs. Part 1. Line segments detection and extraction,” Remote Sens. 6, 5938–5958 (2014).

    Google Scholar 

  40. M. Rahnama and R. Gloaguen, “TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, Part 2: Line segment linking and merging,” Remote Sens. 6, 11468‒11493 (2014).

    Google Scholar 

  41. R. Richter, Atmospheric/Topographic Correction for Satellite Imagery: ATCOR-2/3 User Guide, Version 6.3 (German Aerospace Center, Wessling, Germany, 2007).

    Google Scholar 

  42. B. Sadeghi, P. Moarefvand, P. Afzal, A. B. Yasrebi, and L. Daneshvar Saein, “Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran,” J. Geochem. Explor. 122, 9‒19 (2012).

    Google Scholar 

  43. T. B. Sadiya, A. Abdulrahman, A. A. Sadiq, H. M. Vaatyough, A. T. Ibrahim, S. O. Muhammed, N. M. Ihenacho, M. J. Yusuf, I. Aliyu, and N. V. Agu, “Lineaments extraction from remote sensing data for detection of hydrothermal alteration zones in Northern Nigeria,” IOSR J. Environ. Sci. Toxicol. Food Technol. 10 (4), 17–22 (2016).

    Google Scholar 

  44. A. Salem, S. Wiliams, J. D. Fairhead, D. Ravat, and R. Smith, “Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives,” The Leading Edge 26, 1502–1505 (2007).

    Google Scholar 

  45. P. R. Sanjay and M. M. Naoghare, “Review on determination of edges by automatic threshold value generation,” Int. J. Comput. Sci. Mobile Comput. 4 (12), 58–66 (2015).

    Google Scholar 

  46. G. Sarp, MS Thesis (Ankara, 2005).

  47. E. M. Schetselaar, M. Tiainen, and T. Woldai, “Integrated geological interpretation of remotely sensed data to support geological mapping in Mozambique” Geol. Surv. Finl., Spec. Pap. 48, 35–63 (2008).

    Google Scholar 

  48. J. Šilhavý, J. Minár, P. Mentlík, and J. Sládek, “A new artefacts resistant method for automatic lineament extraction using Multi-Hillshade Hierarchic Clustering (MHHC),” Comput. Geosci. 92, 9–20, (2016).

    Google Scholar 

  49. J. Stocklin, “Structural history and tectonics of Iran: A review,” AAPG Bull. 52, 1229‒1258 (1968).

    Google Scholar 

  50. H. Tabatabaei and S. H. A. Haroni, “Geochemical characteristics of Gor Gor Cu–Mo porphyry system,” 25th Iranian Symposium on Geosciences (Geol. Surv. Iran, Tehran, 2006), p. 60.

  51. R. G. Thannoun, “Automatic extraction and geospatial analysis of lineaments and their tectonic significance in some areas of Northern Iraq using remote sensing techniques and GIS,” Int. J. Enhanced Res. Sci. Technol. Eng. 2 (2), 1–11 (2013).

    Google Scholar 

  52. J. Tuominen and T. Lipping, “Atmospheric correction of hyperspectral data using combined empirical and model based method,” Proceedings of the 7th EARSeL Workshop of the Special Interest Group in Imaging Spectroscopy, Edinburgh, U. K.,2011, pp. 11–13.

  53. J. Wang and P. J. Howarth, “Use of the Hough transform in automated lineament detection,” IEEE Trans. Geosci. Remote Sens. 28, 561–567 (1990).

    Google Scholar 

  54. Y. Wang and J. Li, “An improved Canny algorithm with adaptive threshold selection,” in, Vol. 22: International Conference on Engineering Technology and Application (ICETA 2015), Xiamen, China,2015, Art. No. 01017. https://doi.org/10.1051/matecconf/20152201017

  55. C. Wijns, C. Perez, and P. Kowalczyk, “Short Note Theta map: Edge detection in magnetic data,” Geophysics 70 (4), 39–44 (2005).

    Google Scholar 

  56. D. Wladis, “Automatic lineament detection using digital elevation models with second derivative filters,” ISPRS J. Photogramm. Eng. Remote Sens. 65, 453–458 (1999).

    Google Scholar 

  57. F. A. Zakir, M. H. T. Qari, and M. E. Mostafa, “Technical note a new optimizing technique for preparing lineament density maps,” Int. J. Remote Sens. 20, 1073–1085 (1999).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Faculty of Mining Engineering, University of Tehran, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, M., Bahroudi, A. & Abedi, M. Automatic Lineament Extraction Method in Mineral Exploration Using CANNY Algorithm and Hough Transform. Geotecton. 54, 366–382 (2020). https://doi.org/10.1134/S0016852120030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120030085

Keywords:

Navigation