Skip to main content
Log in

Comparative analysis of the role of atom and ion spectral lines in radiative heating of four types of space capsules

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

This paper presents the results of two-dimensional calculation of radiative heating of the Fire-II, Stardust, Orion, and PPTS (Prospected Piloted Transport System, Russia) spacecraft entering the dense atmosphere of the Earth with orbital and superorbital velocities. A specificity of the simulation is the allowance for atom and ion spectral lines with use of the NERAT-ASTEROID computer platform. This computer platform is destined for solving the complete system of equations of radiative gas dynamics of viscous, heatconducting, and physically and chemically nonequilibrium gas and radiative transfer in two- and threedimensional geometries. The spectral and optical properties of high-temperature gases are calculated in the entire flow field by ab-initio quasi-classical and quantum mechanical methods. The selective heat radiation transfer was calculated by the line-by-line method on specially generated computational grids over the radiation wavelength, which make possible appreciable saving of computer resources while providing detailed description of the contours of atomic lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surzhikov, S.T., Zh. Khim. Fiz., 2010, vol. 29, no. 7, p. 48.

    Google Scholar 

  2. Park, C., Nonequilibrium Hypersonic Aerothermo-Dynamics, New York: Wiley, 1990.

    Google Scholar 

  3. Surzhikov, S.T. and Shang, J.S., AIAA Pap., 2011, p. 251.

    Google Scholar 

  4. Diadkin, A., Beloshitsky, A., Shuvalov, M., and Surzhikov, S., AIAA J., 2011, p. 453.

    Google Scholar 

  5. Shang, J.S. and Surzhikov, S.T., J. Spacecr. Rockets, 2011, vol. 48, no. 3, p. 385.

    Article  ADS  Google Scholar 

  6. Feldick, A.M., Modest, M.F., Levin, D.A., Gnoffo, P., and Johnston, C.O., AIAA J., 2009, p. 475.

    Google Scholar 

  7. Johnston, C.O., Hollis, B.R., and Sutton, K., J. Spacecr. Rockets, 2008, vol. 45, no. 6, p. 1185.

    Article  ADS  Google Scholar 

  8. Belotserkovskii, O.M., Biberman, L.M., Bronin, S.Ya., Lagar’kov, A.N., and Fomin, V.N., Teplofiz. Vys. Temp., 1969, vol. 7, no. 3, p. 529.

    Google Scholar 

  9. Bronin, S.Ya. and Lagar’kov, A.N., Teplofiz. Vys. Temp., 1970, vol. 8, no. 4, p. 741.

    Google Scholar 

  10. Biberman, L.M., Bronin, S.Ya., and Lagar’kov, A.N., Mekh. Zhidk. Gaza, 1972, no. 5, p. 112.

    Google Scholar 

  11. Bronin, S.Ya. and Brykin, M.V., Teplofiz. Vys. Temp., 1977, vol. 15, no. 1, p. 137.

    ADS  Google Scholar 

  12. Fortov, V.E., Fizika vysokikh plotnostei energii (High Energy Density Physics), Moscow: Fizmatlit, 2012.

  13. Surzhikov, S.T., http://eqworldipmnetru/ru/library/ mechanics/fluidhtm

  14. Surzhikov, S.T., Teplovoe izluchenie gazov i plazmy (Thermal Radiation of Gases and Plasma), Moscow: Mosk. Gos. Tekh. Univ. im. Baumana, 2004.

    Google Scholar 

  15. Surzhikov, S.T., AIAA Pap., 1997, p. 2367.

    Google Scholar 

  16. Surzhikov, S.T., Opticheskie svoistva gazov i plazmy (Optical Properties of Gases and Plasma), Moscow: Mosk. Gos. Tekh. Univ. im. Baumana, 2004.

    Google Scholar 

  17. Surzhikov, S.T., AIAA Pap., 2000, p. 2369.

    Google Scholar 

  18. Surzhikov, S.T., AIAA Pap., 2002, p. 2898.

    Google Scholar 

  19. Olynick, D.R., Henline, W.D., Hartung, L.C., and Candler, G.V., AIAA J., 1994, p. 1955.

    Google Scholar 

  20. Olynick, D., Chen, Y.-K., and Tauber, M.E., J. Spacecr. Rockets, 1999, vol. 36, no. 3, p. 442.

    Article  ADS  Google Scholar 

  21. Surzhikov, S.T. and Shang, J.S., AIAA J., 2011, p. 3630.

    Google Scholar 

  22. Surzhikov, S.T., AIAA-13-0231, 2013. doi 10.2514/ 6.2013-66

    Google Scholar 

  23. Surzhikov, S.T., AIAA-2013-0190, 2013. doi 10.2514/ 6.2013-190

    Google Scholar 

  24. Wiese, W.L., Smith, M.W., and Glennon, B.M., Atomic Transition Probabilities, Washington, 1966, vol. 1.

  25. Surzhikov, S.T., AIAA Pap., 2012, p. 2514.

    Google Scholar 

  26. Cornette, E.S., NASA TM X-1305, November 1966.

    Google Scholar 

  27. Brandis, A.M. and Johnston, C.O., AIAA J., 2014, p. 2374.

    Google Scholar 

  28. Surzhikov, S.T. and Shuvalov, M.P., High Temp., 2013, vol. 51, no. 3, p. 408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Surzhikov.

Additional information

Original Russian Text © S.T. Surzhikov, 2016, published in Teplofizika Vysokikh Temperatur, 2016, Vol. 54, No. 2, pp. 249–266.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surzhikov, S.T. Comparative analysis of the role of atom and ion spectral lines in radiative heating of four types of space capsules. High Temp 54, 235–251 (2016). https://doi.org/10.1134/S0018151X16020206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X16020206

Keywords

Navigation