Skip to main content
Log in

The Effect of the Geometry of the Discharge Channel in a High-Frequency Plasmatron on Heat Transfer in High-Enthalpy Subsonic Air Jets

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

An experimental study of the heat transfer in a 100 kW high-frequency plasmatron was performed for three configurations of a discharge channel with a conical, water-cooled nozzle with exit diameters of 30 mm, 40 mm, and 50 mm. The dynamic pressures and heat fluxes to a water-cooled copper model with a 20-mm front flat face were measured in high-enthalpy subsonic air jets in a generator power range between 20 and 75 kW. The flow in the discharge channel and the subsonic dissociated air jet flow over the model were numerically studied under the experimental conditions in a high-frequency plasmatron with the Navier-Stokes and the Maxwell equations. Based on a comparison of the experimental and calculated data on heat transfer, the enthalpy at the outer edge of the boundary layer and velocity on the flow axis in front of the model were recovered. With the local heat transfer simulation theory, the numerical results for a flow over the model were used to establish the correspondence between the parameters of the plasma flow in a high-frequency plasmatron and the conditions of the entry of a blunt-nosed body with a hypersonic velocity into the atmosphere; the altitude, velocity, and the radius of curvature of the body nose with respect to the operating conditions of a high-frequency generator were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gordeev, A.N., Kolesnikov, A.F., and Yakushin, M.I., SAMPE J, 1992, vol. 28, no. 3, p. 29.

    Google Scholar 

  2. Gordeev, A.N. and Kolesnikov, A.F., in Aktual’nye problemy mekhaniki. Fiziko-khimicheskaya mekhanika zhidkostei i gazov (Actual Problems of Mechanics: Physicochemical Mechanics of Liquids and Gases), Moscow: Nauka, 2010, p. 151.

  3. Zalogin, G.N., Zemlyanskii, B.A., Knot’ko, V.B., Murzinov, I.N., Rumynskii, A.N., and Kuz’min, L.A., Kosmonavt. Raketostroen., 1994, no. 2, p. 22.

  4. Zhestkov, B.E., Uch. Zap. Tsentr. Aerogidrodin. Inst., 2014, vol. 45, no. 5, p. 62.

    Google Scholar 

  5. Bottin, B., Chazot, O., Carbonaro, M., van der Yaegen, V., and Paris, S., in Proc. Int. Conf. on Measurement Techniques for High Enthalpy and Plasma Flows, Belgium, 1999, RTO-EN-8.

  6. Herdrich, G., Auweter-Kurtz, M., Kurtz, H., Laux, T., and Winter, M., J. Thermophys. Heat Transfer, 2002, vol. 16, no. 3, p. 440.

    Article  Google Scholar 

  7. Dougherty, M., Owens, W., Meyers, J., and Fletcher, D., in Proc. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 2011.

  8. Vasil’evskii, S.A. and Kolesnikov, A.F., Fluid Dyn., 2000, vol. 35, no. 5, p. 769.

    Article  Google Scholar 

  9. Vasil’evskii, S.A. and Kolesnikov, A.F., in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), Ser. B, Moscow: Yanus-K, 2008, vol. 7-1, p. 220.

  10. Vasil’evskii, S.A. and Kolesnikov, A.F., in Aktual’nye problemy mekhaniki. Mekhanika zhidkosti, gaza i plazmy (Actual Problems of Mechanics: Fluid, Gas, and Plasma Mechanics), Moscow: Nauka, 2008, p. 95.

  11. Gordeev, A.N., Kolesnikov, A.F., and Sakharov, V.I., High Temp., 2015, vol. 53, no. 2, p. 272.

    Article  Google Scholar 

  12. Kolesnikov, A.F., Gordeev, A.N., and Vasil’evskii, S.A., High Temp., 2016, vol. 54, no. 1, p. 29.

    Article  Google Scholar 

  13. Bashkin, V.A., Egorov, I.V., Zhestkov, B.E., and Shvedchenko, V.V., High Temp., 2008, vol. 46, no. 5, p. 705.

    Article  Google Scholar 

  14. Vlasov, V.I., Kosmonavt. Raketostroen., 2001, no. 23, p. 18.

  15. Vlasov, V.I., Zalogin, G.N., and Kovalev, R.V., Kosmonavt. Raketostroen., 2013, no. 3, p. 116.

  16. Van den Abeele, D., Vasil’evskii, S.A., Kolesnikov, A.F., Degrez, G., and Bottin, B., in Progress in Plasma Processing of Materials, Fauchais, P. and Amouroux, J., Eds., New York: Begell House, 1999, p. 245.

    Google Scholar 

  17. Bykova, N.G., Vasil’evskii, S.A., and Kolesnikov, A.F., High Temp., 2004, vol. 42, no. 1, p. 11.

    Article  Google Scholar 

  18. Surzhikov, S.T., Teplovoe izluchenie gazov i plazmy (Thermal Radiation of Gases and Plasma), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2004.

  19. Patankar, S., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere, 1980.

    MATH  Google Scholar 

  20. Vasil’evskii, S.A., Sokolova, I.A., and Andriatis, A.V., Fiz.-Khim. Kin. Gas. Din., 2005, vol. 3. http:// chemphys.edu.ru/media/published/2005-06-14-001.pdf

  21. Kolesnikov, A.F. and Yakushin, M.I., Mat. Model., 1989, vol. 1, no. 3, p. 44.

    MathSciNet  Google Scholar 

  22. Kolesnikov, A.F., Gordeev, A.N., and Vasil’evskii, S.A., Testing materials in the plasma generator VGU-4 and determination of their catalytic activity for conditions simulating heat transfer to the experimental EXPERT apparatus, Preprint of the Inst. Problems in Mechanics, Russian Academy of Sciences, Moscow, 2011, no. 969.

  23. Petukhov, I.V., in Chislennye metody resheniya differentsial’nykh i integral’nykh uravnenii i kvadraturnye formuly (Numerical Methods for Solving Differential and Integral Equations and Quadrature Formulas), Moscow: Nauka, 1964, p. 304.

  24. Kolesnikov, A.F., Fluid Dyn., 1993, vol. 28, no. 1, p. 131.

    Article  ADS  Google Scholar 

  25. Kolesnikov, A.F., High Temp., 2014, vol. 52, no. 1, p. 110.

    Article  Google Scholar 

Download references

Funding

The work was performed according to the Government Order no. АААА-А17-117021310383-2 with the partial support of the Russian Foundation for Basic Research, project no. 17-01-00054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Kolesnikov.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.F., Gordeev, A.N., Vasil’evskii, S.A. et al. The Effect of the Geometry of the Discharge Channel in a High-Frequency Plasmatron on Heat Transfer in High-Enthalpy Subsonic Air Jets. High Temp 57, 469–476 (2019). https://doi.org/10.1134/S0018151X19040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19040114

Navigation