Skip to main content
Log in

Heat Transfer in Liquid Metal at an Upward Flow in a Pipe in Transverse Magnetic Field

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The results of a study of the hydrodynamics and heat transfer in an upward mercury flow in a vertical pipe under the effect of a transverse magnetic field are presented. The problem simulates a liquid-metal flow in the poloidal channels of a blanket cooling system in a TOKAMAK fusion reactor. The experimental data on temperature fields and heat transfer obtained from probe measurements in a mercury magnetohydrodynamic test facility at JIHT RAS are given. These data are compared with the results of numerical modeling to determine the validity envelope for the computational model and to verify whether the experimental conditions were properly specified. Without a magnetic field, heat transfer is complicated by mixed turbulent convection; some regimes have a decrease in heat transfer of up to 30–40% in comparison with the forced-convection heat transfer. The effect of a transverse magnetic field drastically affects the regularities of heat transfer due to flow laminarization and the change in the velocity profile caused by the electromagnetic interaction. At the same time, in the studied region of flow conditions, mixed convection in uniformly heated pipes does not have a strong effect on the heat transfer in a magnetic field and does not induce fluctuating, return, or separated flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Wang, H. and Tang, Ch., Fusion Eng. Des., 2012, vol. 87, p. 1501.

    Article  Google Scholar 

  2. Wong, C.P.C., Salavy, J.-F., Kim, Y., Kirillov, I., Rajendra Kumar, E., Morley, N.B., Tanaka, S., and Wu, Y.C., Fusion Eng. Des., 2008, vol. 83, p. 850.

    Article  Google Scholar 

  3. Kuteev, B.V. and Khripunov, V.I., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2009, no. 1, p. 3.

  4. Petukhov, B.S. and Polyakov, A.F., Teplofiz.Vys. Temp., 1967, vol. 5, no. 1, p. 87.

    Google Scholar 

  5. Petukhov, B.S. and Strigin, B.K., Teplofiz.Vys. Temp., 1968, vol. 6, no. 5, p. 933.

    Google Scholar 

  6. Jackson, D., Cotton, M.A., and Axcell, B.P., Int. J. Heat Fluid Flow, 1989, vol. 10, p. 2.

    Article  Google Scholar 

  7. Jackson, J., Int. J. Heat Fluid Flow, 1983, vol. 4, p. 107.

    Article  Google Scholar 

  8. Buhr, H.O., Horsten, E.A., and Carr, A.D., J. Heat Transfer, 1974, vol. 96, p. 152.

    Article  Google Scholar 

  9. Flaherty, T.W., Eyler, L.L., and Sesonske, A., in Proc. 4th Biennial Symposium on Turbulence in Liquids, Rolla, MO, 1975. https://scholarsmine.mst.edu/sotil/5.

  10. Rachkov, V.I., Sorokin, A.P., and Zhukov, A.V., High Temp., 2018, vol. 56, no. 1, p. 124.

    Article  Google Scholar 

  11. Pacio, J., Marocco, L., and Wetzel, T., J. Heat Mass Transfer, 2015, vol. 51, no. 2, p. 153.

    Article  ADS  Google Scholar 

  12. Hartmann, J., Hg-Dynamics I. Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field, Mathematical-Physical Reports, vol. 15, no. 6, Copenhagen: Ejnar Munksgaard, 1937.

  13. Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors, Roelofs, F., Ed., Woodhead, 2018.

    Google Scholar 

  14. Genin, L.G., Listratov, Ya.I., Sviridov, V.G., Zhilin, V.G., Ivochkin, Yu.P., and Razuvanov, N.G., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2003, no. 4, p. 35.

  15. Belyaev, I.A., Sviridov, V.G., Batenin, V.M., Biryukov, D.A., Nikitina, I.S., Manchkha, S.P., Pyatnitskaya, N.Yu., Razuvanov, N.G., and Sviridov, E.V., Therm. Eng., 2017, vol. 64, no. 11, p. 841.

    Article  Google Scholar 

  16. Gotovskii, M.A. and Firsova, E.V., in Zhidkie metally v termoyadernoi energetike, Tr. TsKTI (Liquid Metals in Thermonuclear Energy: Proc. TsKTI), Leningrad, 1990, no. 264, p. 35.

  17. Lebedev, M.E., Fokin, B.S., Firsova, E.V., and Svi-ridov, V.G., Abstracts of Papers, VI Vseross. konf. po inzhenernym problemam termoyadernykh reaktorov (VI All-Russian Conf. on Engineering Issues of Fusion Reactors), Leningrad: Atominform, 1977, p. 193.

  18. Mel’nikov, I.A., Razuvanov, N.G., Sviridov, V.G., Sviridov, E.V., and Shestakov, A.A., Therm. Eng., 2013, vol. 60, no. 5, p. 355.

    Article  Google Scholar 

  19. Poddubnyi, I.I. and Razuvanov, N.G., Therm. Eng., 2016, vol. 63, no. 2, p. 89.

    Article  Google Scholar 

  20. Kostychev, P.V., Razuvanov, N.G., and Sviridov, V.G., Therm. Eng., 2018, vol. 65, no. 9, p. 606.

    Article  Google Scholar 

  21. Belyaev, I.A., Genin, L.G., Listratov, Ya.I., Melnikov, I.A., Sviridov, V.G., and Sviridov, E.V., Magnetohydrodynamics, 2013, vol. 49, p. 177.

    Article  Google Scholar 

  22. Genin, L.G. and Sviridov, V.G., Gidrodinamika i teploobmen MGD-techenii v kanalakh (Hydrodynamics and Heat Transfer of MHD Flow in Channels), Moscow: Mosk. Energ. Inst., 2001.

  23. Branover, G.G. and Tsinober, A.B., Magnitnaya gidrodinamika neszhimaemykh sred (Magnetic Hydrodynamics of Incompressible Media), Moscow: Nauka, 1970.

  24. Reichardt, H., Z. Angew. Math. Mech., 1951, vol. 31, no. 7, p. 208.

    Article  Google Scholar 

  25. Branover, G.G. and Lielausis, O.A., in Voprosy magnitnoi gidrodinamiki i dinamiki plazmy (Reports on Magnetic Hydrodynamics and Plasma Dynamics), Riga: Zinatne, 1962, p. 591.

  26. Artemov, V.I., Yan’kov, G.G., Karpov, V.E., and Makarov, M.V., Teploenergetika, 2000, no. 7, p. 52.

  27. Lyon, R.N., Chem. Eng. Prog., 1951, vol. 47, no. 2, p. 87.

    Google Scholar 

  28. Zikanov, O., Krasnov, D., Boeck, T., Thess, A., and Rossi, M., Appl. Mech. Rev., 2014, vol. 66, no. 3, p. 030802.

    Article  ADS  Google Scholar 

  29. Belyaev, I.A., Listratov, Y.I., Melnikov, I.A., Razuvanov, N.G., Sviridov, V.G., and Sviridov, E.V., Magnetohydrodynamics, 2016, vol. 52, no. 3, p. 379.

    Article  Google Scholar 

  30. Ihara, S., Tajima, K., and Matsushima, A., J. Appl. Mech., 1967, vol. 34, no. 1, p. 29.

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 17-19-01745).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Luchinkin.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchinkin, N.A., Razuvanov, N.G., Belyaev, I.A. et al. Heat Transfer in Liquid Metal at an Upward Flow in a Pipe in Transverse Magnetic Field. High Temp 58, 400–409 (2020). https://doi.org/10.1134/S0018151X20030128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20030128

Navigation