Skip to main content
Log in

Solid-State Synthesis of Nanocrystalline Gadolinium Zirconate Using Mechanical Activation

  • Published:
Inorganic Materials Aims and scope

Abstract—

Nanocrystalline gadolinium zirconate, Gd2Zr2O7, has been prepared by solid-state reaction, using mechanical activation of a stoichiometric mixture of Gd2O3 and ZrO2. The mechanical activation was performed in an AGO-2 centrifugal planetary mill for 10 min. The processes that occurred during heat treatment of the mechanically activated mixture of gadolinium and zirconium oxides were characterized by X-ray diffraction, IR spectroscopy, and a combination of thermoanalytical techniques. The average crystallite size of gadolinium zirconate prepared by calcining the mechanically activated oxide mixture at 1100 and 1200°C for 3 h was 29 and 68 nm, respectively, as determined using the Scherrer formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Duarte, W., Vardelle, M., and Rossignol, S., Effect of the precursor nature and preparation mode on the coarsening of La2Zr2O7 compounds, Ceram. Int., 2016, vol. 42, pp. 1197–1209.https://doi.org/10.1016/j.ceramint.2015.09.051

    Article  CAS  Google Scholar 

  2. Xu, C., Wang, L., Bai, B., Peng, L., and Cai, S., Rapid synthesis of Gd2Zr2O7 ceramics by flash sintering and its aqueous durability, Eur. Ceram. Soc., 2020, vol. 40, pp. 1620–1625.https://doi.org/10.1016/j.jeurceramsoc.2019.11.060

    Article  CAS  Google Scholar 

  3. Sivakumar, S., Praveen, K., and Shanmugavelayutham, G., Preparation and thermophysical properties of plasma sprayed lanthanum zirconate, Mater. Chem. Phys., 2018, vol. 204, pp. 67–71.https://doi.org/10.1016/j.matchemphys.2017.10.031

    Article  CAS  Google Scholar 

  4. Zinatloo-Ajabshir, S., Salavati-Niasari, M., Sobhari, A., and Zinatloo-Ajabshir, Z., Rare earth zirconate nanostructures: recent development on preparation and photocatalytic applications, J. Alloys Compd., 2018, vol. 767, pp. 1164–1185.https://doi.org/10.1016/j.jallcom.2018.07.198

    Article  CAS  Google Scholar 

  5. Ewing, R.C., Weber, W.J., and Lian, J., Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides, J. Appl. Phys., 2004, vol. 95, pp. 5949–5971. https://doi.org/10.1063/1.1707213

  6. Zhou, D., Mack, D.E., Bakan, E., Mauer, G., Sebold, D., Guillon, O., and Vaßen, R., Thermal cycling performances of multilayered yttria-stabilized zirconia/gadolinium zirconate thermal barrier coatings, J. Am. Ceram. Soc., 2020, vol. 103, pp. 2048–2061.https://doi.org/10.1111/jace.16862

    Article  CAS  Google Scholar 

  7. Karaulov, A.G., Zoz, E.I., and Shlyakhova, T.M., Structure and properties of refractories based on zirconia stabilized by gadolinium oxide, Refract. Ind. Ceram., 1996, vol. 37, nos. 3–4, pp. 83–87.https://doi.org/10.1007/BF02311143

    Article  Google Scholar 

  8. Diaz-Guillen, J.A., Fuentes, A.F., Diaz-Guillen, M.R., Almanza, J.M., Santamaria, J., and Leon, C., The effect of homovalent A-site substitutions on the ionic conductivity of pyrochlore-type Gd2Zr2O7, J. Power. Sources, 2009, vol. 186, pp. 349–352.https://doi.org/10.1016/j.jpowsour.2008.09.106

    Article  CAS  Google Scholar 

  9. Pan, W., Phillpot, S.R., Wan, C.L., Chernatynskiy, A., and Qu, Z.X., Low thermal conductivity oxides, Mater. Res. Bull., 2012, vol. 37, pp. 917–922.https://doi.org/10.1557/mrs.2012.234

    Article  CAS  Google Scholar 

  10. Diaz-Guillen, J.A., Dura, O.J., Diaz-Guillen, M.R., Bauer, E., Lopez de la Torre, M.A., and Fuentes, A.F., Thermophysical properties of Gd2Zr2O7 powders prepared by mechanical milling: effect of homovalent Gd3+ substitution, J. Alloys Compd., 2015, vol. 649, pp. 1145–1150.https://doi.org/10.1016/j.jallcom.2015.07.146

    Article  CAS  Google Scholar 

  11. Wang, C., Guo, L., Zhang, Y., Zhao, X., and Ye, F., Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics, Ceram. Int., 2015, vol. 41, pp. 10730–10735.https://doi.org/10.1016/j.ceramint.2015.05.008

    Article  CAS  Google Scholar 

  12. Subramanian, M., Aravamudan, G., and Subba Rao, G.V., Oxide pyrochlores – a review, Prog. Solid State Chem., 1983, vol. 15, no. 2, pp. 55–143.https://doi.org/10.1016/0079-6786(83)90001-8

    Article  CAS  Google Scholar 

  13. Kong, S.L., Karatchevtseva, I., Gregg, D.J., Blackford, M.G., Holmes, R., and Triani, G., Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 3273–3285.https://doi.org/10.1016/j.jeurceramsoc.2013.05.011

    Article  CAS  Google Scholar 

  14. Kaliyaperumal, C., Sankarakumar, A., and Paramasivam, T., Grain size effect on the electrical properties of nanocrystalline Gd2Zr2O7 ceramics, J. Alloys Compd., 2020, vol. 813, paper 152221.https://doi.org/10.1016/j.jallcom.2019.152221

  15. Li, W., Zhang, K., Xie, D., Deng, T., Luo, B., Zhang, H., and Huang, X., Characterizations of vacuum sintered Gd2Zr2O7 transparent ceramics using combustion synthesized nanopowder, J. Eur. Ceram. Soc., 2020, vol. 40, pp. 1665–1670.https://doi.org/10.1016/j.jeurceramsoc.2019.12.007

    Article  CAS  Google Scholar 

  16. Yang, Y., Huang, Z., Shi, C., Duan, J., Cheng, G., Wang, H., Wu, D., Qi, J., and Lu, T., Liquid–solid–solution synthesis of ultrafine Gd2Zr2O7 nanoparticles with yield enhancement, Ceram. Int., 2020, vol. 46, pp. 1216–1219.https://doi.org/10.1016/j.ceramint.2019.08.254

    Article  CAS  Google Scholar 

  17. Zhong, F., Zhao, J., Shi, L., Xiao, Y., Cai, G., Zheng, Y., and Long, J., Alkaline-earth metals-doped pyrochlore Gd2Zr2O7 as oxygen conductors for improved NO2 sensing performance, Sci. Rep., 2017, vol. 7, paper 4684.https://doi.org/10.1038/s41598-017-04920-1

  18. Sevastyanov, V.G., Simonenko, E.P., Simonenko, N.P., Sakharov, K.A., and Kuznetsov, N.T., Synthesis of finely dispersed La2Zr2O7, La2Hf2O7, Gd2Zr2O7 and Gd2Hf2O7 oxides, Mendeleev Commun., 2013, vol. 23, pp. 17–18. https://doi.org/10.1016/j.menco m.2013.01.005

  19. Popov, V.V., Zubavichus, Ya.V., Menushenkov, A.P., Yaroslavtsev, A.A., Kulik, E.S., Petrunin, V.F., Korovin, S.A., and Trofimova, N.N., Short- and long-range order balance in nanocrystalline Gd2Zr2O7 powders with a fluorite-pyrochlore structure, Russ. J. Inorg. Chem., 2014, vol. 59, no. 4, pp. 279–285.https://doi.org/10.1134/S0036023614040147

    Article  CAS  Google Scholar 

  20. Jiang, L., Wang, C., Wang, J., Liu, F., You, R., Lv, S., Zeng, G., Zijie, Yang., He, J., Liu, A., Yan, X., Sun, P., Zheng, J., and Lu, G., Pyrochlore Ca-doped Gd2Zr2O7 solid state electrolyte type sensor coupled with ZnO sensing electrode for sensitive detection of HCHO, Sens. Actuators, B, 2020, vol. 309, paper 127768.https://doi.org/10.1016/j.snb.2020.127768

  21. Tang, Z., Huang, Z., Qi, J., Guo, X., Han, W., Zhou, M., Penga, S., and Lu, T., Synthesis and characterization of Gd2Zr2O7 defect-fluorite oxide nanoparticles via a homogeneous precipitation-solvothermal method, RSC Adv., 2017, vol. 7, pp. 54980–54985. https://doi.org/10.1039/C7RA11019G

  22. Liu, S., Jiang, K., Zhang, H., Liu, Y., Zhang, L., Su, B., and Liu, Y., Nano-nano composite powders of lanthanum–gadolinium zirconate and gadolinia-stabilized zirconia prepared by spray pyrolysis, Surf. Coat. Technol., 2013, vol. 232, pp. 419–424.https://doi.org/10.1016/j.surfcoat.2013.05.044

    Article  CAS  Google Scholar 

  23. Mandal, B.P. and Tyagi, A.K., Preparation and high temperature-XRD studies on a pyrochlore series with the general composition Gd2 – xNdxZr2O7, J. Alloys Compd., 2007, vol. 437, pp. 260–263.https://doi.org/10.1016/j.jallcom.2006.07.093

    Article  CAS  Google Scholar 

  24. Liu, Z.G., Ouyang, J.H., Zhou, Y., and Xia, X.L., Effect of Ti substitution for Zr on the thermal expansion property of fluorite-type Gd2Zr2O7, Mater. Des., 2009, vol. 30, pp. 3784–3788.https://doi.org/10.1016/j.matdes.2009.01.030

    Article  CAS  Google Scholar 

  25. Yang, J., Shu, X., Luo, F., Wang, L., Gu, Y., Wu, J., and Liu, X., Solubility of Sr2+ in the Gd2Zr2O7 ceramics via appropriate occupation designs, J. Alloys Compd., 2019, vol. 808, paper 151563.https://doi.org/10.1016/j.jallcom.2019.07.275

  26. Patwe, S.J. and Tyagi, A.K., Solubility of Ce4+ and Sr2+ in the pyrochlore lattice of Gd2Zr2O7 for simulation of Pu and alkaline earth metal, Ceram. Int., 2006, vol. 32, pp. 545–548.https://doi.org/10.1016/j.ceramint.2005.04.009

    Article  CAS  Google Scholar 

  27. Kennedy, B.J., Zhou, Q., and Avdeev, M., Neutron diffraction studies of Gd2Zr2O7 pyrochlore, J. Solid State Chem., 2011, vol. 184, pp. 1695–1698.https://doi.org/10.1016/j.jssc.2011.04.003

    Article  CAS  Google Scholar 

  28. Sattonnay, G., Moll, S., Thome, L., Decorse, C., Legros, C., Simon, P., Jagielski, J., Jozwik, I., and Monnet, I., Phase transformations induced by high electronic excitation in ion-irradiated Gd2(ZrxTi1 – x)2O7 pyrochlores, J. Appl. Phys., 2010, vol. 108, paper 103512.https://doi.org/10.1063/1.3503452

  29. Hu, Q., Zeng, J., Wang, L., Shu, X., Shao, D., Zhang, H., and Lu, X., Helium ion irradiation effects on Nd and Ce co-doped Gd2Zr2O7 pyrochlore ceramic, J. Rare Earths, 2018, vol. 36, pp. 398–403.https://doi.org/10.1016/j.jre.2017.11.005

    Article  CAS  Google Scholar 

  30. Heinicke, G., Tribochemistry, Berlin: Akademie, 1984.

    Google Scholar 

  31. Boldyrev, V.V., Mechanochemistry and mechanical activation of solids, Russ. Chem. Rev., 2006, vol. 75, no. 3, pp. 177–189.https://doi.org/10.1070/RC2006v075n03ABEH001205

    Article  CAS  Google Scholar 

  32. Fundamental'nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Basic Principles of Mechanical Activation, Mechanochemical Synthesis, and Mechanochemical Technologies), Avvakumov, E.G., Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2009.

    Google Scholar 

  33. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

  34. Butyagin, P.Yu., Problems in mechanochemistry and prospects for its development, Russ. Chem. Rev., 1994, vol. 63, no. 12, pp. 965–976.https://doi.org/10.1070/RC1994v063n12ABEH000129

    Article  Google Scholar 

  35. Moreno, K.J., Fuentes, A.F., García-Barriocanal, J., León, C., and Santamaría, J., Mechanochemical synthesis and ionic conductivity in Gd2(Sn1 – yZry)2O7 (0 ≤ y ≤ 1) solid solution, J. Solid State Chem., 2006, vol. 179, pp. 323–330.https://doi.org/10.1016/j.jssc.2005.09.036

    Article  CAS  Google Scholar 

  36. Fuentes, A.F., Montemayor, S.M., Maczka, M., Lang, M., Ewing, R.C., and Amador, U., Critical review of existing criteria for the prediction of pyrochlore formation and stability, Inorg. Chem., 2018, vol. 57, pp. 12093–12105.https://doi.org/10.1021/acs.inorgchem.8b01665

    Article  CAS  PubMed  Google Scholar 

  37. Kalinkin, A.M., Kalinkina, E.V., Zalkind, O.A., and Vasiljeva, T.N., Effect of mechanical activation on the reactivity of oxides of rare earth elements and yttrium, Russ. J. Appl. Chem., 2004, vol. 77, no. 10, pp. 1598–1605.https://doi.org/10.1007/s11167-005-0079-4

    Article  CAS  Google Scholar 

  38. Brykała, U., Diduszko, R., Jach, K., and Jagielski, J., Hot pressing of gadolinium zirconate pyrochlore, Ceram. Int., 2015, vol. 41, pp. 2015–2021. https://doi.org/10.1016/j.ceram int.2014.09.114

  39. Kalinkin, A.M., Nevedomskii, V.N., Kalinkina, E.V., and Balyakin, K.V., Milling assisted synthesis of calcium zirconate CaZrO3, Solid State. Sci., 2014, vol. 34, pp. 91–96.https://doi.org/10.1016/j.solidstatesciences.2014.06.002

    Article  CAS  Google Scholar 

  40. Kalinkin, A.M., Balyakin, K.V., Kalinkina, E.V., and Nevedomskii, V.N., Solid-state synthesis of nanocrystalline strontium zirconate assisted by mechanical activation, Russ. J. Gen. Chem., 2016, vol. 86, no. 4, pp. 785–791.https://doi.org/10.1134/S1070363216040046

    Article  CAS  Google Scholar 

  41. Kalinkin, A.M., Balyakin, K.V., Kalinkina, E.V., and Nevedomskii, V.N., Solid-state synthesis of nanocrystalline BaZrO3 using mechanical activation, Inorg. Mater., 2017, vol. 53, no. 5, pp. 496–501.https://doi.org/10.1134/S0020168517050119

    Article  CAS  Google Scholar 

  42. Kalinkin, A.M., Usoltsev, A.V., Kalinkina, E.V., Nevedomskii, V.N., and Zalkind, O.A., Solid-phase synthesis of nanocrystalline lanthanum zirconate using mechanical activation, Russ. J. Gen. Chem., 2017, vol. 87, no. 10, pp. 2258–2264.https://doi.org/10.1134/S1070363217100024

    Article  CAS  Google Scholar 

  43. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1, p. 450.

    Google Scholar 

  44. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Zefirov, N.S., Ed., Moscow: Sovetskaya Entsiklopediya, 1998, vol. 5, p. 387.

    Google Scholar 

  45. Zyryanov, V.V., Mechanochemical synthesis of complex oxides, Russ. Chem. Rev., 2008, vol. 77, no. 2, pp. 105–135.https://doi.org/10.1070/RC2008v077n02ABEH003709

    Article  CAS  Google Scholar 

  46. Dassuncao, L.M., Giolito, I., and Ionashiro, M., Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium, Thermochim. Acta, 1989, vol. 137, pp. 319–330.https://doi.org/10.1016/0040-6031(89)87224-7

    Article  CAS  Google Scholar 

  47. Gaspar, R.D.L., Mazali, I.O., and Sigoli, F.A., Particle size tailoring and luminescence of europium(III)-doped gadolinium oxide obtained by the modified homogeneous precipitation method: dielectric constant and counter anion effects, Colloids Surf., A, 2010, vol. 367, pp. 155–160.https://doi.org/10.1016/j.colsurfa.2010.07.003

    Article  CAS  Google Scholar 

  48. Caro, P. and Lemaitre-Blasse, M., Hydroxycarbonates de terres rares Ln2(CO3)x(OH)2(3 – x)CO3nH2O (Ln = terres rares), C. R. Acad. Sci., 1969, no. 269, pp. 687–619.

  49. Phillippi, C.M. and Mazdiyasni, K.S., Infrared and Raman spectra of zirconia polymorphs, J. Am. Ceram. Soc., 1971, vol. 54, pp. 254–258.https://doi.org/10.1111/j.1151-2916.1971.tb12283.x

    Article  CAS  Google Scholar 

  50. Adachi, G. and Imanaka, N., The binary rare earth oxides, Chem. Rev., 1998, vol. 98, pp. 1479–1514.https://doi.org/10.1021/cr940055h

    Article  CAS  Google Scholar 

  51. Zinkevich, M., Thermodynamics of rare earth sesquioxides, Prog. Mater. Sci., 2007, vol. 52, pp. 597–647.https://doi.org/10.1016/j.pmatsci.2006.09.002

    Article  CAS  Google Scholar 

  52. Belov, G.V., Iorish, V.S., and Yungman, V.S., IVTANTHERMO for Windows—database on thermodynamic properties and related software, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1999, vol. 23, no. 2, pp. 173–180.https://doi.org/10.1016/S0364-5916(99)00023-1

    Article  CAS  Google Scholar 

  53. Korneev, V.R., Glushkova, V.B., and Keler, E.K., Heats of formation of rare-earth zirconates, Izv. Akad. Nauk SSSR, Neorg. Mater., 1971, vol. 7, no. 5, pp. 886–887.

    CAS  Google Scholar 

  54. Helean, K.B., Begg, B.D., Navrotsky, A., Ebbinghaus, B., Weber, W.J., and Ewing, R.C., Enthalpies of formation of Gd2(Ti2 – xZrx)O7 pyrochlores, MRS Proc., 2000, vol. 663, pp. 691–697.https://doi.org/10.1557/PROC-663-691

  55. Bolech, M., Cordfunke, E.H.P., van Genderen, A.C.G., van der Laan, R.R., Janssen, F.J.J.G., and van Miltenburg, J.C., The heat capacity and derived thermodynamic functions of La2Zr2O7 and Ce2Zr2O7 from 4 to 1000 K, J. Phys. Chem. Solids, 1997, vol. 58, pp. 433–439.https://doi.org/10.1016/S0022-3697(06)00137-5

    Article  CAS  Google Scholar 

  56. Lutique, S., Javorsky, P., Konings, R.J.M., Krupa, J.-C., van Gendern, A.C.G., van Miltenburg, J.C., and Wastin, F., The low-temperature heat capacity of some lanthanide zirconates, J. Chem. Thermodyn., 2004, vol. 36, pp. 609–618.https://doi.org/10.1016/j.jct.2004.03.017

    Article  CAS  Google Scholar 

  57. Dorofeev, G.A., Streletskii, A.N., Povstugar, I.V., Protasov, A.V., and Elsukov, E.P., Determination of nanoparticle sizes by X-ray diffraction, Colloid J., 2012, vol. 74, no. 6, pp. 678–688.https://doi.org/10.1134/S1061933X12060051

    Article  CAS  Google Scholar 

  58. Lehmann, H., Pitzer, D., Pracht, G., Vassen, R., and Stöver, D., Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system, J. Am. Ceram. Soc., 2003, vol. 86, pp. 1338–1344.https://doi.org/10.1111/j.1151-2916.2003.tb034-73.x

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target (scientific research, experimental development, and technology project, theme no. AAAA-A18-118030690027-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kalinkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinkin, A.M., Vinogradov, V.Y. & Kalinkina, E.V. Solid-State Synthesis of Nanocrystalline Gadolinium Zirconate Using Mechanical Activation. Inorg Mater 57, 178–185 (2021). https://doi.org/10.1134/S0020168521020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521020072

Keywords:

Navigation