Skip to main content
Log in

Neuromorphic Calculations Using Lateral Arrays of Magnetic Microstructures with Broken Translational Symmetry

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A possibility to control the characteristics of spin waves in a lateral array of magnetic microstructures with broken translational symmetry is demonstrated. The regimes of spatial and frequency selection of the spinwave signal are studied by Brillouin light scattering and by numerical simulations. The micromagnetic simulation is used to study the effect of geometric parameters on the characteristics of dipole-coupled spin waves. The specific features of the coupling between the transverse modes propagating in the system with broken translational symmetry are revealed. The results can be applied to develop multiplexers, power dividers, couplers, and the ultrahigh frequency signal processing circuits using the neuromorphic principles, which are based on the lateral arrays of magnetic microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Sadovnikov, C. S. Davies, V. V. Kruglyak, D. V. Romanenko, S. V. Grishin, E. N. Beginin, Y. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. B 96, 060401 (2017).

    Article  ADS  Google Scholar 

  2. V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, and S. O. Demokritov, Appl. Phys. Lett. 106, 022403 (2015).

    Article  ADS  Google Scholar 

  3. D. Sander, S. O. Valenzuela, D. Makarov, et al., J. Phys. D: Appl. Phys. 50, 363001 (2017).

    Article  Google Scholar 

  4. V. E. Demidov, S. Urazhdin, G. de Loubens, O. Klein, V. Cros, A. Anane, and S. O. Demokritov, Phys. Rep. 673, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. V. Sadovnikov, A. A. Grachev, S. E. Sheshukova, Yu. P. Sharaevskii, A. A. Serdobintsev, D. M. Mitin, and S. A. Nikitov, Phys. Rev. Lett. 120, 257203 (2018).

    Article  ADS  Google Scholar 

  6. V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, A. N. Slavin, and S. O. Demokritov, Sci. Rep. 5, 8578 (2015).

    Article  ADS  Google Scholar 

  7. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).

    Article  ADS  Google Scholar 

  8. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, London, New York, 1996).

    Google Scholar 

  9. D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Applications (Springer, New York, 2009).

    MATH  Google Scholar 

  10. A. V. Vashkovskii, V. S. Stal’makhov, and Yu. P. Sharaevskii, Magnetostatic Waves in Microwave Electronics (Sarat. Gos. Univ., Saratov, 1993) [in Russian].

    Google Scholar 

  11. E. H. Lock, Phys. Usp. 55, 1239 (2012).

    Article  ADS  Google Scholar 

  12. S. N. Bajpai, J. Appl. Phys. 58, 910 (1985).

    Article  ADS  Google Scholar 

  13. T. Bracher, P. Pirro, J. Westermann, T. Sebastian, B. Lagel, B. van de Wiele, A. Vansteenkiste, and B. Hillebrands, Appl. Phys. Lett. 102, 132411 (2013).

    Article  ADS  Google Scholar 

  14. A. V. Sadovnikov, S. Davies, S. Grishin, V. Kruglyak, D. Romanenko, Y. Sharaevskii, and S. Nikitov, Appl. Phys. Lett. 106, 192406 (2015).

    Article  ADS  Google Scholar 

  15. C. S. Davies, A. V. Sadovnikov, S. V. Grishin, Y. P. Sharaevsky, S. A. Nikitov, and V. V. Kruglyak, IEEE Trans. Magn. 51, 3401904 (2015).

    Article  Google Scholar 

  16. K. Vogt, F. Fradin, J. Pearson, T. Sebastian, S. Bader, B. Hillebrands, A. Hoffmann, and H. Schultheiss, Nat. Commun. 5, 3727 (2014).

    Article  ADS  Google Scholar 

  17. A. V. Sadovnikov, E. N. Beginin, S. E. Sheshukova, D. V. Romanenko, Yu. P. Sharaevskii, and S. A. Nikitov, Appl. Phys. Lett. 107, 202405 (2015).

    Article  ADS  Google Scholar 

  18. S. A. Odintsov, A. V. Sadovnikov, A. A. Grachev, E. N. Beginin, Yu. P. Sharaevskii, and S. A. Nikitov, JETP Lett. 104, 563 (2016).

    Article  ADS  Google Scholar 

  19. A. V. Sadovnikov, S. A. Odintsov, E. N. Beginin, S. E. Sheshukova, Yu. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. B 96, 144428 (2017).

    Article  ADS  Google Scholar 

  20. C. S. Davies, A. Francies, A. V. Sadovnikov, S. V. Chertopalov, M. T. Bryan, S. V. Grishin, D. A. Allwood, Y. P. Sharaevskii, S. A. Nikitov, and V. V. Kruglyak, Phys. Rev. B 92, 020408 (2015).

    Article  ADS  Google Scholar 

  21. J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, and J. Grollier, Nature (London, U.K.) 547, 428 (2017).

    Article  Google Scholar 

  22. S. Manipatruni, D. E. Nikonov, and I. A. Young, Nat. Phys. 14, 338 (2018).

    Article  Google Scholar 

  23. H. Sasaki and N. Mikoshiba, Electron. Lett. 15, 172 (1979).

    Article  ADS  Google Scholar 

  24. H. Sasaki and N. Mikoshiba, J. Appl. Phys 52, 3546 (1981).

    Article  ADS  Google Scholar 

  25. P. Grunberg, M. G. Cottam, W. Vach, C. Mayr, and R. E. Camley, J. Appl. Phys. 53, 2078 (1982).

    Article  ADS  Google Scholar 

  26. A. V. Sadovnikov, S. A Odintsov, E. N. Beginin, A. A. Grachev, V. A. Gubanov, S. E. Sheshukova, Y. P. Sharaevsky, and S. A. Nikitov, JETP Lett. 107, 1 (2018).

    Article  Google Scholar 

  27. A. V. Sadovnikov, A. A. Grachev, E. N. Beginin, S. E. Sheshukova, Y. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. Appl. 7, 014013 (2017).

    Article  ADS  Google Scholar 

  28. Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, and A. Chumak, Sci. Adv. 4, 1701517 (2018).

    Article  ADS  Google Scholar 

  29. S. O. Demokritov, B. Hillebands, and A. N. Slavin, Phys. Rep. 348, 441 (2001).

    Article  ADS  Google Scholar 

  30. T. W. O’Keefe and R. W. Patterson, J. Appl. Phys. 49, 4886 (1978).

    Article  ADS  Google Scholar 

  31. S. O. Demokritov, A. A. Serga, A. Andre, V. E. Demidov, M. P. Kostylev, B. Hillebrands, and A. N. Slavin, Phys. Rev. Lett. 93, 047201 (2004).

    Article  ADS  Google Scholar 

  32. V. Cherepanov, I. Kolokolov, and V. L’vov, Phys. Rep. 229, 81 (1993).

    Article  ADS  Google Scholar 

  33. I. V. Zavislyak and A. V. Tychinskii, Physical Principles of Functional Microelectronics (Kiev. Gos. Univ. im. T.G. Shevchenko, Kiev, UMKVO, 1989) [in Russian].

    Google Scholar 

  34. T. Gilbert, Phys. Rev. 100, 1243 (1955).

    Google Scholar 

  35. T. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).

    Article  ADS  Google Scholar 

  36. A. V. Sadovnikov, V. A. Gubanov, S. E. Sheshukova, Yu. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. Appl. 9, 051002 (2018).

    Article  ADS  Google Scholar 

  37. A. V. Sadovnikov, A. A. Grachev, V. A. Gubanov, S. A. Odintsov, A. A. Martyshkin, S. E. Sheshukova, Yu. P. Sharaevskii, and S. A. Nikitov, Appl. Phys. Lett. 112, 142402 (2018).

    Article  ADS  Google Scholar 

  38. V. S. L’vov, Wave Turbulence under Parametric Excitation (Springer, Berlin, Heidelberg, 1994).

    Book  MATH  Google Scholar 

  39. I. V. Zavislyak, V. M. Talaevskii, and L. V. Chevnyk, Sov. Phys. Solid State 31, 248 (1989).

    Google Scholar 

  40. A. V. Vashkovsky and E. H. Lock, Phys. Usp. 49, 389 (2006).

    Article  ADS  Google Scholar 

  41. A. Y. Annenkov and S. V. Gerus, J. Commun. Technol. Electron. 41, 196 (1996).

    Google Scholar 

  42. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers (Cambridge Univ. Press, Cambridge, 1983).

    MATH  Google Scholar 

  43. A. V. Sadovnikov and A. G. Rozhnev, Appl. Nonlin. Dyn. 20, 143 (2012).

    Google Scholar 

  44. A. Khitun, M. Bao, and K. L. Wang, J. Phys. D 43, 264005 (2010).

    Article  ADS  Google Scholar 

  45. A. Khitun, M. Bao, and K. L. Wang, IEEE Trans. Magn. 44, 9 (2008).

    Article  Google Scholar 

  46. M. Rahman, S. Khasanvis, J. Shi, and C. A. Moritz, Trans. Nanotech. 14, 742 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sadovnikov.

Additional information

Original Russian Text © A.V. Sadovnikov, A.A. Grachev, S.A. Odintsov, A.A. Martyshkin, V.A. Gubanov, S.E. Sheshukova, S.A. Nikitov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 5, pp. 332–338.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, A.V., Grachev, A.A., Odintsov, S.A. et al. Neuromorphic Calculations Using Lateral Arrays of Magnetic Microstructures with Broken Translational Symmetry. Jetp Lett. 108, 312–317 (2018). https://doi.org/10.1134/S0021364018170113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018170113

Navigation