Skip to main content
Log in

Point Defects and Their Properties in the Fe20Ni20Cr20Co20Cu20 High-Entropy Alloy

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The characteristics of interstitial atoms and vacancies in the Fe20Ni20Cr20Co20Cu20 high-entropy alloy have been determined by the molecular dynamics and statics methods. The effect of these defects on elastic moduli has been analyzed. It has been found that interstitial atoms are stable only in the form of dumbbells responsible for a significant diaelastic effect (decrease in the shear modulus). As compared to vacancies, an increase in the concentration of interstitial dumbbells much more rapidly reduces the shear modulus with an increase in the volume. Furthermore, interstitial dumbbells are responsible for the appearance of specific high- and low-frequency modes in the spectrum of the vibrational density of states. The latter modes are related to the observed diaelastic effect. The evolution of the diaelastic effect and vibrational spectrum during the transition of the system to a noncrystalline state has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Gao, J.-W. Yeh, P. K. Liaw, and Y. Zhang, High Entropy Alloys. Fundamentals and Applications. (Springer, Switzerland, 2016).

    Book  Google Scholar 

  2. Y. Zhang, High Entropy Materials. A Brief Introduction. (Springer, Singapore, 2019).

    Book  Google Scholar 

  3. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Mater. Today 19, 349 (2016).

    Article  Google Scholar 

  4. M. Yang, X. J. Liu, Y. Wu, H. Wang, X. Z. Wang, and Z. P. Lu, Mater. Res. Lett. 6, 495 (2018).

    Article  Google Scholar 

  5. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  6. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    Article  ADS  Google Scholar 

  7. A. V. Granato, Eur. J. Phys. B 87, 18 (2014).

    Article  ADS  Google Scholar 

  8. V. A. Khonik and N. P. Kobelev, Metals 9, 605 (2019).

    Article  Google Scholar 

  9. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  10. D. Farkas and A. Caro, J. Mater. Res. 33, 3218 (2018).

    Article  ADS  Google Scholar 

  11. R. Meister and L. Peselnick, J. Appl. Phys. 37, 4121 (1966).

    Article  ADS  Google Scholar 

  12. R. A. Konchakov, A. S. Makarov, G. V. Afonin, M. A. Kretova, N. P. Kobelev, and V. A. Khonik, JETP Lett. 109, 460 (2019).

    Article  ADS  Google Scholar 

  13. A. S. Makarov, Yu. P. Mitrofanov, R. A. Konchakov, N. P. Kobelev, K. Csach, J. C. Qiao, and V. A. Khonik, J. Non-Cryst. Solids 521, 119474 (2019).

    Article  ADS  Google Scholar 

  14. W. G. Wolfer, in Comprehensive Nuclear Materials, Ed. by R. J. M. Konings (Elsevier, Amsterdam, 2012).

  15. W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z. P. Lu, D. Li, Y. Li, C. T. Liu, and X.-Q. Chen, J. Mater. Sci. Technol. 34, 355 (2018).

    Article  Google Scholar 

  16. L. E. Rehn, J. Holder, A. V. Granato, R. R. Coltman, and F. W. Young, Jr., Phys. Rev. B 10, 349 (1974).

    Article  ADS  Google Scholar 

  17. F. Tian, Front. Mater. 4, 36 (2017).

    Article  ADS  Google Scholar 

  18. C. A. Gordon and A. V. Granato, Mater. Sci. Eng. A 370, 83 (2004).

    Article  Google Scholar 

  19. R. A. Konchakov, A. S. Makarov, N. P. Kobelev, A. M. Glezer, G. Wilde, and V. A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).

    ADS  Google Scholar 

  20. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids. (Academic, New York, London, 1972).

    Google Scholar 

  21. P. H. Dederichs, C. Lehman, H. R. Schober, A. Scholz, and R. Zeller, J. Nucl. Mater. 69–70, 176 (1978).

    Article  ADS  Google Scholar 

  22. T. Brink, L. Koch, and K. Albe, Phys. Rev. B 94, 224203 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-62-46003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Konchakov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 12, pp. 806–812.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kretova, M.A., Konchakov, R.A., Kobelev, N.P. et al. Point Defects and Their Properties in the Fe20Ni20Cr20Co20Cu20 High-Entropy Alloy. Jetp Lett. 111, 679–684 (2020). https://doi.org/10.1134/S0021364020120097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020120097

Navigation