Skip to main content
Log in

Stability of non-isothermal fluids (Review)

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper gives a review of studies of flow stability for viscous heat-conducting fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  2. Hydromechanics of Weightlessness, Ed. by A. D. Myshkis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  3. Hydrodynamics of Interfaces (Mir, Moscow, 1984) [in Russian].

  4. Methods of Solving Problems of Fluid Mechanics in Zero Gravity, Ed. by A. D. Myshkis (Naukova Dumka, Kiev, 1992) [in Russian].

    Google Scholar 

  5. V. K. Andreev, “Solutions of the Birikh Convection Equations and Some of its Generalizations,” Preprint No. 1-10 (Inst. of Comput. Model., Sib. Branch, Russian Acad. of Sci., Krasnoyarsk, 2010).

    Google Scholar 

  6. G. Z. Gershuni, E.M. Zhukhovitskii, and A.A. Nepomnyashchii, Stability of Convective Flows (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  7. H. P. Kuo and S. A. Korpela, “Stability and Finite Amplitude Natural Convection in a Shallow Cavity with Insulated Top and Bottom and Heated from a Side,” Phys. Fluids 31(1), 33–42 (1988).

    Article  ADS  MATH  Google Scholar 

  8. P. Laure and B. Roux, “Linear and Non-Linear Analysis of the Hadley Circulation,” J. Crystal Growth 97(1), 226–234 (1989).

    Article  ADS  Google Scholar 

  9. S. A. Nikitin, D. S. Pavlovskii, and V. I. Polezhaev, “Stability and Spatial Structure of Convection in Elongated Horizontal Layers with Lateral Heat Input,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 28–37 (1996).

    Google Scholar 

  10. N. I. Lobov, D. V. Lyubimov, T. P. Lyubimova, and R. V. Skuridin, “On Advective Flow in a Horizontal Rectangular Channel,” in Hydrodynamics, No. 11 (Perm’ State Univ., Perm’, 1998), pp. 167–175.

    Google Scholar 

  11. T. P. Lyubimova, D. V. Lyubimov, V. A. Morozov, et al., “Stability of Convection in a Horizontal Channel Subjected to a Longitudinal Temperature Gradient. 1. Effect of Aspect Ratio and Prandtl Number,” J. Fluid Mech. 635, 275–295 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. T. P. Lyubimova and D. A. Nikitin, “Stability of Advective Flow in a Horizontal Rectangular Channel with Adiabatic Boundaries,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 82–91 (2011).

    Google Scholar 

  13. T. P. Lyubimova and D. A. Nikitin, “Three-Dimensional Advective Flows in a Horizontal Cylinder of Square Section with Heat Insulated Lateral Boundaries,” Vychisl. Mekh. Splosh. Sred. 4(2), 72–81 (2011).

    Google Scholar 

  14. S. N. Aristov and K. G. Shvarts, “On the Stability of Advective Flow in a Rotating Horizontal Fluid Layer,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 3–11 (1999).

    Google Scholar 

  15. S. N. Aristov and K. G. Shvarts, “Stability of Advective Eddy Flows in a Rotating Horizontal Fluid Layer,” Hydrodynamics (Perm’ State Univ., Perm’, 2006).

    Google Scholar 

  16. E. L. Tarunin and K. G. Shvarts, “Investigation of the Linear Stability of Advective Flow by the Grid Method,” Vychisl. Tekhnol. 6(6), 108–117 (2001).

    MathSciNet  MATH  Google Scholar 

  17. K. G. Shvarts, “The Effect of Rotation on the Stability of Advective Flow in a Horizontal Fluid Layer at Low Prandtl Numbers,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 29–38 (2005).

    Google Scholar 

  18. D. G. Chikulaev and K. G. Shvarts, “Investigation of the Linear Stability of Advective Flow in a Rotating Horizontal Fluid Layer with Solid Boundaries Using the Differential Sweep Method,” Vestn. Perm. Gos. Univ., No. 3, 42–46 (2011).

    Google Scholar 

  19. G. Z. Gershuni, P. Laure, V. M. Myznikov, et al., “On the Stability of Plane-Parallel Advective Flow in Long Horizontal Layers,” Microgravity Q. 2(3), 141–151 (1992).

    Google Scholar 

  20. I. V. Gnevanov and E. A. Tarunin, “Convective Motion Caused by Internal Sources of Heat Concentrated in the Center of the Layer,” in Hydrodynamics: Collection of Scientific Papers, No. 14 (Perm’ State Univ., Perm’, 2004), pp. 79–87.

    Google Scholar 

  21. N. I. Lobov and S. V. Shklyaev, “Effect of Motion of Boundaries on the Stability of Convective Flow in a Vertical Layer with Internal Heat Sources,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 3–8 (1997).

    Google Scholar 

  22. N. I. Lobov, “Effect of Forced Longitudinal Flow on the Stability of Convection in a Vertical Plane Layer with Internal Heat Sources,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 14–17 (2005).

    Google Scholar 

  23. H. Bénard and D. Avsec,, “Travaux Récents sur les Tourbillons en Bandes; Applications à L’astrophysique et à la Météorologíe,” J. Phys. Radium 9, 468–500 (1938).

    Article  Google Scholar 

  24. H. R. Brand, R. J. Deissler and G. Ahlers, “Simple Model for the Bénard Instability with Horizontal Flow near Threshold,” Phys. Rev. A 43, 4262–4268 (1991).

    Article  ADS  Google Scholar 

  25. H. W. Müller, M. Tveitereid, and S. Trainoff,, “Rayleigh-Bénard Problem with Imposed Weak Through-Flow: Two-Coupled Ginzburg-Landau Equations,” Phys. Rev. E 48, 263–272 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  26. M. T. Ouazzani, J.-K. Platten, and A. Mojtabi, “Intermittent Pattern in Mixed Convection,” Appl. Sci. Res. 51, 677–685 (1993).

    Article  Google Scholar 

  27. E. Schröder and K. Bühler, “Three-Dimensional Convection in Rectangular Domains with Horizontal Through-flow,” Int. J. Heat Mass Transfer 38, 1249–1259 (1995)

    Article  Google Scholar 

  28. X. Nicolas, A. Mojtabi, and J.-K. Platten, “Two Dimensional Numerical Analysis of the Poiseuille-Bénard Flow in a Rectangular Channel Heated from Below,” Phys. Fluids 9, 337–348 (1997).

    Article  ADS  Google Scholar 

  29. X. Nicolas, J.-M. Luijkx, and J.-K. Platten, “Linear Stability of Mixed Convection Flows in Horizontal Rectangular Channels of Finite Transversal Extension Heated from Below,” Int. J. Heat Mass Transfer 43, 589–610 (2000).

    Article  MATH  Google Scholar 

  30. D. Roth, P. Büchel, M. Lücke, et al. “Influence of Boundaries on Pattern Selection in Through-Flow,” Physica D 97, 253–263 (1996)

    Article  Google Scholar 

  31. X. Nicolas, P. Traore, A. Mojtabi, and J.-P. Caltagirone, “Augmented Lagrangian Method and Open Boundary Conditions in 2-D Simulation of Poiseuille-Bénard Channel Flow,” Int. J. Number Meth. Fluids 25, 265–283 (1997).

    Article  ADS  MATH  Google Scholar 

  32. H. W. Müller, M. Lucke, and M. Kamps,, “Transversal Convection Patterns in Horizontal Shear Flow,” Phys. Rev. A 45(6), 3714–3726 (1992).

    Article  ADS  Google Scholar 

  33. M. Tveitereid and H. W. Müller,, “Pattern Selection at the Onset of Rayleigh-Bénard Convection in Horizontal Shear Flow,” Phys. Rev. E 50(2), 1219–1226 (1994)

    Article  ADS  Google Scholar 

  34. A. Couairon and J. M. Chomaz, “Pattern Selection in the Presence of a Cross Flow,” Phys. Rev. Lett. 79(14), 2666–2669 (1997).

    Article  ADS  Google Scholar 

  35. O. N. Dement’ev, “Effect of Convection on the Stability of a Liquid with Nonuniformly Distributed Heavy Admixture,” Prikl. Mekh. Tekh. Fiz. 41(5), 180–187 (2000) [Appl. Mech. Tech. Phys. 41 (5), 923–929 (2000)].

    MATH  Google Scholar 

  36. D. V. Lyubimov, T. P. Lyubimova, D. A. Nikitin, and A. V. Perminov, “Stability of Advective Flow of a Binary Mixture in a Horizontal Plane Layer with Perfectly Heat-Conducting Boundaries,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 129–139 (2010).

    Google Scholar 

  37. I. I. Ryzhkov and V. M. Shevtsova, “Convective Stability of Multicomponent Fluids in the Thermogravita Tional Column,” Phys. Rev. E 79, 026308 (2009).

    Article  ADS  Google Scholar 

  38. I. I. Ryzhkov and V. M. Shevtsova, “Long-Wave Instability of a Multicomponent Fluid Layer with the Soret Effect,” Phys. Fluids 21, 014102 (2009).

    Article  ADS  Google Scholar 

  39. V. K. Andreev and V. B. Bekezhanova, Stability of Nonisothermal Fluids (Siberian Federal University, Krasnoyarsk, 2010) [in Russian].

    Google Scholar 

  40. V. K. Andreev and L. Sobachkina, Motion of a Binary Mixture in Plane and Cylindrical Layers (Siberian Federal University, Krasnoyarsk, 2012) [in Russian].

    Google Scholar 

  41. A. V. Getling, Rayleigh-Benard Convection: Structure and Dynamics (World Scientific Publishing, 1998).

    Book  MATH  Google Scholar 

  42. H. F. Goldstein, E. Knobloch, and M. Silber, “Planform Selection in Rotating Convection,” Phys. Fluids A 2(4), 625–627 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  43. H. F. Goldstein, E. Knobloch, and M. Silber, “Planform Selection in Rotating Convection: Hexagonal Symmetry,” Phys. Rev. A 46(8), 4755–4761 (1992).

    Article  ADS  Google Scholar 

  44. P. B. Bassom and K. Zhang, “Strongly Nonlinear Convection Cells in a Rapidly Rotating Fluid Layer,” Geophys. Astrophys. Fluid Dyn. 76, 223–238 (1994).

    Article  ADS  Google Scholar 

  45. S. M. Cox and P. S. Matthews, “Instability of Rotating Convection,” J. Fluid Mech. 40(3), 153–172 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  46. O. M. Podvigina, “Instability of Convective Flows of Small Amplitude in a Rotating Layer with Free Boundaries,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 40–51 (2006).

    Google Scholar 

  47. D. S. Pavlovski, “Secondary Flows in a Layer with a Free Surface,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 85–98 (1994).

    Google Scholar 

  48. V. K. Andreev, V. E. Zakhvataev, and E. A. Ryabitskii, Thermocapillary Instability (Nauka, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  49. Yu. K. Bratukhin and S. A. Makarov, Hydrodynamic Stability of Interfaces (Perm’ State Univ., Perm’, 2005) [in Russian].

    Google Scholar 

  50. A. B. Esersky, A. Garcimartin, J. Burguete, et al., “Hydrothermal Waves in Marangoni Convection in a Cylindrical Container,” Phys. Rev. E 47(2), 1126–1131 (1993).

    Article  ADS  Google Scholar 

  51. A. B. Esersky, A. Garcimartin, H. L. Mancini, and C. Perez-Garcia, “Spatiotemporal Structure of Hidrothermal Waves in Marangoni Convection,” Phys. Rev. E 48(6), 4414–4422 (1993).

    Article  ADS  Google Scholar 

  52. E. Favre, L. Blumenfeld, and F. Daviaud, “Instabilities of a Liquid Layer Locally Heated on its Free Surface,” Phys. Fluids 9(5), 1473–1475 (1997).

    Article  ADS  Google Scholar 

  53. Yu. K. Bratukhin, C. O. Makarov, and A. U. Mizev, “Vibrational Modes of Thermocapillary Convection from a Local Heat Source,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 92–103 (2000).

    Google Scholar 

  54. A. I. Mizev, “Experimental Investigation of Thermocapillary Convection Induced by a Local Temperature Inhomogeneity near the Liquid Surface. 1. Solid SWource of Heat,” Prikl. Mekh. Tekh. Fiz. 45(4), 36–49 (2004) [Appl. Mech. Tech. Phys. 45 (4), 486–497 (2004)].

    Google Scholar 

  55. A. I. Mizev, “Experimental Investigation of Thermocapillary Convection Induced by a Local Temperature Inhomogeneity near the Liquid Surface. 2. Radiation-Induced Heat Source,” Prikl. Mekh. Tekh. Fiz. 45(5), 102–108 (2004) [Appl. Mech. Tech. Phys. 45 (5), 699–704 (2004)].

    Google Scholar 

  56. A. B. Ezerskii and V. V. Chernov, “Effect of Wind Stress on the Convection Structure in a Fluid Layer Heated from Below,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 35(5), 656–659 (1999).

    Google Scholar 

  57. V. P. Reutov, A. B. Ezerskii, G. V. Rybushkina, and V. V. Chernov, “Convective Structures in a Thin Layer of an Evaporating Liquid under an Airflow,” Prikl. Mekh. Tekh. Fiz. 48(4), 3–14 (2007) [Appl. Mech. Tech. Phys. 48 (4), 469–478 (2007)].

    Google Scholar 

  58. V. P. Reutov and G. V. Rybushkina, “Selection of Convective Rolls in a Thin Layer of an Evaporating Fluid under an Airflow,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 57–67 (2008).

    Google Scholar 

  59. V. G. Batalov, A. N. Sukhanovskii, and P. G. Frick, “Experimental Study of Spiral Rolls in an Advective Flow Impinging on a Hot Plane Surface,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 39–49 (2007).

    Google Scholar 

  60. A. I. Mizev, “Experimental Study of the Effect of Gas-Phase Thickness on Stability and Structure of the Flow in a Two-Layer Liquid-Gas System,” Prikl. Mekh. Tekh. Fiz. 45(6), 14–18 (2004) [Appl. Mech. Tech. Phys. 45 (6), 784–787 (2004)].

    Google Scholar 

  61. I. I. Ryzhkov, “On the Thermocapillary Instability of a Liquid Cylinder in Gas Flow,” in Recent Developments in Applied Mathematics and Mechanics: Theory, Experiment, Practice, Abstracts. Int. Conf., Novosibirsk, Russia, May 30–June 4, 2011 (Inst. Comput. Technol., Novosibirsk, 2011), p. 101.

    Google Scholar 

  62. I. I. Ryzhkov, “Thermocapillary Instabilities in Liquid Bridges Revisited,” Phys. Fluids 23, p. 082103 (2011).

    Article  ADS  Google Scholar 

  63. M. Lappa, Thermal Convection: Patterns, Evolution and Stability (Wiley, Chichester, 2010).

    MATH  Google Scholar 

  64. R. Delgado Buscalioni and E. Crespo del Arco, “Stability of Thermally Driven Shear Flows in Long Inclined Cavities with End-to-End Temperature Difference,” Int. J. Heat Mass Transfer. 42, 2811–2822 (1999).

    Article  MATH  Google Scholar 

  65. R. V. Sagitov and A. N. Sharifulin, “Long-Wave Instability of an Advective Flow in an Inclined Fluid Layer with Perfectly Heat-Conducting Boundaries,” Prikl. Mekh. Tekh. Fiz. 52(6), 13–21 (2011) [Appl. Mech. Tech. Phys. 52 (6), 57–864 (2011)].

    Google Scholar 

  66. R. V. Sagitov and A. N. Sharifulin, “Stability of Steady Thermal Convection in an Inclined Rectangular Cavity in a Low-Mode Approximation,” Teplofiz. Aeromekh. 15(2), 247–256 (2008).

    Google Scholar 

  67. J. Mizushima and Y. Hara, “Routes to Unicellular Convection in a Titled Rectangular Cavity,” J. Phys. Soc. Jap. 69(8), 2371–2374 (2000).

    Article  ADS  Google Scholar 

  68. I. V. Gnevanov and E. A. Tarunin, “Stability of Convective Motion in Layers with Heat Release in the Center of the Layer,” Vestn. Perm. Gos. Univ., Mat., Mekh., Inform., No. 4, 134–138 (2006).

    Google Scholar 

  69. A. I. Gnevanov and E. A. Tarunin, “Stability of Convective Flow in an Inclined Layer with Heat Release in the Center of the Layer,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 31–38 (2007).

    Google Scholar 

  70. L. P. Kholpanov and V. I. Shkadov, Hydrodynamics, Heat and Mass Transfer with the Interface (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  71. S. W. Joo, S. H. Davis, and S. G. Bankoff, “Long-Wave Instabilities of Heated Falling Films: Two-Dimensional Theory of Uniform Layers,” J. Fluid Mech. 230, 117–146 (1991).

    Article  ADS  MATH  Google Scholar 

  72. D. A. Goussis and R. E. Kelly, “Surface Waves and Thermocapillary Instabilities in a Liquid Film Flow,” J. Fluid Mech. 223, 25–45 (1991).

    Article  ADS  MATH  Google Scholar 

  73. S. Kalliadasis, E. Demekhin, C. Ruyer-Quil, and M. Velarde, “Thermocapillary Instability and Wave Formation on a Film Flowing Down a Uniformly Hated Plane,” J. Fluid Mech. 492, 303–338 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. U. Thiele and E. Knobloch, “Thin Liquid Films on a Slightly Inclined Heated Plate,” Phys. D 190, 213–248 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  75. Yu. Ya. Trifonov, “Effect of Finite-Amplitude Waves on the Evaporation of a Liquid Film Flowing Down a Vertical Wall,” Prikl. Mekh. Tekh. Fiz. 34(6), 64–71 (1993) [Appl. Mech. Tech. Phys. 34 (6), 802–808 (1993).

    MathSciNet  MATH  Google Scholar 

  76. S. G. Bankoff, “Significant Questions in Thin Liquid Film Heat Transfer,” Trans. ASME, J. Heat Transfer 116, 10–16 (1994).

    Article  Google Scholar 

  77. R. Kh. Zeitunyan, “Benard-Marangoni Thermocapillary-Instability Problem,” Usp. Fiz. Nauk 168(3), 259–286 (1998).

    Article  Google Scholar 

  78. A. Oron, S. N. Davis, and S. G. Bankoff, “Long-Scale Evolution of thin Liquid Films,” Rev. Modern Phys. 69(3), 931–980 (1997).

    Article  ADS  Google Scholar 

  79. A. Oron and Y. Peles, “Stabilization of thin Liquid Films by Internal Heat Generation,” Phys. Fluids 10, 537–539 (1998).

    Article  ADS  Google Scholar 

  80. W. Boos and A. Thess, “Cascade of Structures in a Long-Wave Marangoni Instability,” Phys. Fluids 11, 1484–1494 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. O. A. Kabov, I. V. Marchuk, and V. M. Chupin, “Thermal Imaging Study of the Liquid Film Flowing on Vertical Surface with Local Heat Source,” Russ. J. Eng. Thermophys., No. 2, 105–138 (1996).

    Google Scholar 

  82. A. M. Frank and O. A. Kabov, “Thermocapillary Structure Formation in a Falling Film: Experiment and Calculations,” Phys. Fluids 18(4), 032107 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  83. J. M. Skotheim, U. Thiele, and B. Scheid, “On the Instability of a Falling Film due to Localized Heating,” J. Fluid Mech. 475, 1–19 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. S. Kalliadasis, A. Kiyashko, and E. A. Demekhin, “Marangoni Instability of a thin Liquid Film Heated from Below by a Local Heat Source,” J. Fluid Mech. 475, 377–408 (2003).

    Article  ADS  MATH  Google Scholar 

  85. E. A. Demekhin, S. Kalliadasis, and M. G. Velarde, “Suppressing Falling Film Instabilities by Marangoni Forces,” Phys. Fluids 18(4), p. 042111 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  86. S. Miladinova, S. Slavtchev, G. Lebon, and J.-C. Legros, “Long-Wave Instabilities of Non-Uniformly Heated Falling Films,” J. Fluid Mech. 453, 153–175 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. S. Miladinova, D. Staykova, G. Lebon, and B. Scheid, “Effect of Nonuniform Wall Heating on the Three-Dimensional Instability of Falling Films,” Acta Mech. 156, 79–91 (2002).

    Article  MATH  Google Scholar 

  88. O. Kabov, A. Glushchuk, and J.-C. Legros, “Gravity Effect on Dynamics of Liquid Film with Two Contact Lines: Results of Parabolic Flights,” in 3rd Int. Symp. on Physical Sciences in Space, Nara (Jpn.), Oct. 22–26, 2007, Book of Abstracts (Nara, 2007), pp. 321–322.

    Google Scholar 

  89. V. Cheverda and O. Kabov, “Flow Regimes Map for FC-72 Liquid Film in the Rectangular Mini Channel,” in 3rd Int. Topical Team Workshop on Two-Phase Systems for Ground and Space Applications, Brussels (Belgium), Sept. 10–12, 2008, Book of Abstracts (Brussels, 2008), pp. 97.

    Google Scholar 

  90. C. S. Iorio, O. N. Goncharova, and O. A. Kabov, “Study of Evaporative Convection in an Open Cavity under Shear Stress Flow,” Microgravity Sci. Technol. 21(1), S313–S319 (2009).

    Article  Google Scholar 

  91. O. N. Goncharova, O. A. Kabov, and V. V. Pukhnachov, “Solutions of Special Type Describing the Three Dimensional Thermocapillary Flows with an Interface,” Int. J. Heat Mass Transfer 55, 715–725 (2012).

    Article  Google Scholar 

  92. V. Bekezhanova and O. A. Kabov, “Change in the Instability Forms of Stationary Flow of Liquid Film Driven by Gas Flow,” in 5th Int. Topical Team Workshop on Two-Phase Systems for Ground and Space Applications, Kyoto (Jpn.), Sept. 26–29, 2010, Book of Abstracts (Kyoto, 2010), p. 19.

    Google Scholar 

  93. V. Bekezhanova and O. A. Kabov, “Instability of the Joint Flow of Liquid Film and Co-Current Gas Flow: Theory and Experiment,” in 6th Int. Conf. on Two-Phase Systems for Ground and Space Applications, Cava de’Tirreni (Italy), Sept. 25–28, 2011, Book of Abstracts (Napoli, 2011), p. 46.

    Google Scholar 

  94. A. M. Frank, “Suppression of Thermocapillary Instability in a Falling Film,” Phys. Fluids 18, p. 078106 (2006).

    Article  ADS  Google Scholar 

  95. A. M. Frank, “Thermocapillary Instability of Film Flow in a Horizontal Tube,” Vychisl. Tekhnol. 11, Part 2, Special Issue, 76–83 (2006).

    MATH  Google Scholar 

  96. Yu. O. Kabova, A. Alexeev, T. Gambaryan-Roisman, and P. Stephan, “Marangoni-Induced Deformation and Rupture of a Liquid Film on a Heated Microstructured Wall,” Phys. Fluids 18, 012104 (2006).

    Article  ADS  Google Scholar 

  97. A. Oron, “Non-Linear Dynamics of Three-Dimensional Long-Wave Marangoni Instability in thin Liquid Films,” Phys. Fluids 12, 1633–1645 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  98. V. S. Ajaev, E. Y. Gatapova, and O. A. Kabov, “Rupture in thin Liquid Films on Structured Surfaces,” Phys. Rev. E 84, p. 041606 (2011).

    Article  ADS  Google Scholar 

  99. B. A. Smorodin, “On the Stability of Plane-Parallel Flow of a Liquid Dielectric in a Transverse Alternating Electric Field,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 25–33 (2001).

    Google Scholar 

  100. V. A. Il’in and B. L. Smorodin, “Dynamics of Electroconvective Structures in a Weakly Conducting Liquid,” Prikl. Mekh. Tekh. Fiz. 49(3), 20–27 (2008) [Appl. Mech. Tech. Phys. 49 (3), 362–368 (2008)].

    Google Scholar 

  101. S. Slavtchev, M. Hennenberg, G. Valchev, and B. Weyssow, “Stability of Ferrofluid Flows in a Horizontal Channel Subjected to a Longitudinal Temperature Gradient and an Oblique Magnetic Field,” Microgravity Sci. Technol. 20(3/4), 199–203 (2008).

    Article  Google Scholar 

  102. D. V. Lyubimov, T. P. Lyubimova, A. B. Perminov, et al., “Stability of Convection in a Horizontal Channel Subjected to a Longitudinal Temperature Gradient. 2. Effect of a Magnetic Field,” J. Fluid Mech. 635, 297–319 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  103. D. V. Lyubimov, A. V. Burnysheva, H. Ben Hadid, et al., “Rotating Magnetic Field Effect on Convection and its Stability in a Horizontal Cylinder Subjected to a Longitudinal Temperature Gradient,” J. Fluid Mech. 664, 108–137 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  104. S. M. Zen’kovskaya and I. B. Simonenko, “Effect of High-Frequency Vibrations on the Onset of Convection,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 51–55 (1966).

    Google Scholar 

  105. V. A. Briskman, Vibrational Thermocapillary Convection and Stability, Hydromechanics and Heat, Mass Transfer in Microgravity (Gordon and Breach, London, 1992), pp. 111–119.

    Google Scholar 

  106. R. V. Birikh, V. A. Briskman, A. L Zuev, et al., “Interaction between the Thermovibrational and Thermocapillary Convection Mechanisms,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 107–121 (1994).

    Google Scholar 

  107. S. M. Zen’kovskaya and A. L. Shleikel’, “Effect of High-Frequency Vibrations on the Onset of Convection in a Horizontal Fluid Layer,” Dokl. Akad Nauk 382(5), 632–636 (2002).

    MathSciNet  Google Scholar 

  108. S. M. Zen’kovskaya and A. L. Shleikel’, “Effect of High-Frequency Vibrations on the Onset of Marangoni Convection in a Horizontal Fluid Layer,” Prikl. Mat. Mekh. 66(4), 572–582 (2002).

    MATH  Google Scholar 

  109. S. M. Zen’kovskaya, V. A. Novosyadlyi, and A. L. Sheikel’, “Effect of Vertical Vibrations on the Onset of Thermocapillary Convection in a Horizontal Fluid Layer,” Prikl. Mat. Mekh. 71(2), 277–288 (2007).

    MathSciNet  MATH  Google Scholar 

  110. S. M. Zen’kovskaya, “Marangoni Long-Wave Oscillatory Instability in a Horizontal Fluid Layer,” Prikl. Mat. Mekh. 71(5), 837–843 (2007).

    MathSciNet  MATH  Google Scholar 

  111. A. S. Or and R. E. Kelly, “The Effects of Thermal Modulation upon the Onset of Marangoni-Benard Convection,” J. Fluid Mech. 456, 161–182 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  112. G. Z. Gershuni and D. V. Lyubimov, Thermal Vibrational Convection (Wiley, New York, 1998).

    Google Scholar 

  113. R. V. Birikh, V. A. Briskman, S. V. Bushueva, R. N. Rudakov, “Thermocapillary and Vibrational Instability in a Two-Layer System with a Deformable Interface,” in Collected Scientific Papers of the Inst. of Continum Mechanics, Ural Branch, Russian Acad. of Sci. (Inst. of Continum Mech., UB RAS, Perm’, 2003), pp. 21–33.

    Google Scholar 

  114. T. P. Lyubimova and Ya. N. Parshakova, “Stability of Equilibrium of a Two-Layer System with a Deformable Interface and Specified Heat Flux at the External Boundaries,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 19–29 (2007).

    Google Scholar 

  115. S. M. Zenkovskaya and V. A. Novosiadliy, “Influence of High-Frequency Vibrations on the Onset of Convecti on in a Two-Layer System,” C. R. Mecanique 336, 269–274 (2008).

    Article  ADS  MATH  Google Scholar 

  116. V. A. Novosyadlyi, “Effect of Vibration on the Occurrence of Thermocapillary Convection and Internal Waves in Layers of Immiscible Liquids,” Candidate’s Dissertation in Phys.-Math. Sci. (Perm’, 2008).

    Google Scholar 

  117. S. M. Zen’kovskaya and V. A. Novosyadlyi, “Effect of High-Frequency Translational Vibration on the Convective Instability of a Two-Layer Fluid,” Prikl. Mat. Mekh. 73(3), 384–396 (2009).

    MathSciNet  MATH  Google Scholar 

  118. S. M. Zenkovskaya and V. A. Novosiadliy, “Averaging Method and Long-Wave Asymptotics in Vibrational Convection in Layers with an Inter Face,” J. Eng. Math. 69(2/3), 277–289 (2011).

    Article  MathSciNet  Google Scholar 

  119. B. I. Myznikova and B. A. Smorodin, “Convective Stability of a Horizontal Layer of a Two-Component Mixture in the Modulated Field of External Forces,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 3–13 (2001).

    Google Scholar 

  120. S. M. Zen’kovskaya and A. L. Sheikel’, “Vibrational Marangoni Convection in a Layer of a Binary Mixture,” Izv. Vyssh. Uhceb. Zaved., Sev.-Kavk. Region, Est. Nauki, No. 5, 23–27 (2009).

    Google Scholar 

  121. M. P. Zavarykin, A. V. Zyuzgin, and G. F. Putin, “Experimental Study of Parametric Heat Convection,” in Collected Scientific Papers of the Inst. of Continum Mechanics, Ural Branch, Russian Acad. of Sci., No. 2 (Inst. of Continum Mech., UB RAS, Perm’), pp. 79–96 (2001).

    Google Scholar 

  122. R. V. Birikh and T. N. Katanova, “Effect of High-Frequency Vibrations on the Stability of Advective Flow,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 16–22 (1998).

    Google Scholar 

  123. D. V. Lyubimov and S. V. Shklyaev, “On the Stability of Advective Thermoacoustic Flow,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 10–21 (2000).

    Google Scholar 

  124. S. V. Shklyaev, “Stability of Vibroconvective Flow in an Inclined Layer Against Three-Dimensional Perturbations,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 10–21 (2001).

    Google Scholar 

  125. B. L. Smorodin, “Stability of Thermal Vibrational Flow in an Inclined Liquid Layer Against Finite-Frequency Vibrations,” Prikl. Mekh. Tekh. Fiz. 44(1), 53–61(2003) [Appl. Mech. Tech. Phys. 44 (1), 44–51 (2003)].

    MATH  Google Scholar 

  126. V. G. Kozlov, “Vibrational Thermal Convection in Rotating Cavities,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 5–14 (2004).

    Google Scholar 

  127. E. S. Tyuleneva, E. V. Varushkina, and A. V. Perminov, “Fluid Motion in a Weak Acoustic Field,” Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 1, 62–73 (2009).

    Google Scholar 

  128. A. A. Bratsun and V. S. Teplov, “Parametric Excitation of a Secondary Flow in a Vertical Layer of a Fluid in the Presence of Small Solid Particles,” Prikl. Mekh. Tekh. Fiz. 42(1), 48–55 (2001) [Appl. Mech. Tech. Phys. 42 (1), 42–48 (2001)].

    MATH  Google Scholar 

  129. V. S. Teplov, “Problem of Stability of Convective Flows of a Two-Phase Medium under High-Frequency Vibrations,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 42–48 (2008).

    Google Scholar 

  130. V. S. Teplov, “Equations of Convective Instability of a Two-Phase Medium with Modulation of the Gravity Force,” Prikl. Mekh. Tekh. Fiz. 49(2), 21–28 (2008) [Appl. Mech. Tech. Phys. 49 (2), 172–178 (2008)].

    MathSciNet  Google Scholar 

  131. B. I. Myznikova and B. L. Smorodin, “Long-Wave Instability of Flow of a Binary Mixture in a Vertical Channel in the Presence of Vibrations,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 80–91 (2009).

    Google Scholar 

  132. V. Shevtsova, I. I. Ryzhkov, D. E. Melnikov, et al., “Experimental and Theoretical Study of Vibration-Induced Thermal Convection in Low Gravity,” J. Fluid Mech. 648(1), 53–82 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  133. M. Hasnaoui, E. Bilgen, P. Vasseur, and L. Robillard, “Mixed Convective Heat Transfer in a Horizontal Channel Heated Periodically from Below,” Numer. Heat Transfer, A 20, 297–315 (1991).

    Article  ADS  Google Scholar 

  134. X. Wang, L. Robbilard, and P. Vasseur, “Laminar Mixed Convection Heat Transfer between Parallel Plates with Periodically Localized Heat Sources,” Heat Transfer Develop. 171, 81–94 (1991).

    Google Scholar 

  135. A. Tangborn, “A Two-Dimensional Instability in a Mixed Convection Flow with Spatially Periodic Temperature Boundary Conditions,” Phys. Fluids, A 4(7), 1583–1586 (1992).

    Article  ADS  Google Scholar 

  136. S. Q. Zhang and A. Tangborn, “Flow Regimes in Two-Dimensional Mixed Convection with Spatially Periodic Lower Wall Heating,” Phys. Fluids 6(10), 3285–3293 (1994).

    Article  ADS  MATH  Google Scholar 

  137. M. Najam, A. Amahmid, M. Hasnaoui, M. El Alami, “Unsteady Mixed Convection in a Horizontal Channel with Rectangular Blocks Periodically Disturbed on its Lower Wall,” Int. J. Heat Fluid Flow 24, 726–735 (2003).

    Article  Google Scholar 

  138. B. A. Smorodin, “Stability of Convective Flows in a Rotating Liquid Layer under Various Heating Conditions,” Prikl. Mekh. Tekh. Fiz. 39(1), 69–74 (1998) [Appl. Mech. Tech. Phys. 39 (1), 60–64 (1998)].

    MathSciNet  MATH  Google Scholar 

  139. L. H. Ingel’, “Shear Flow Perturbations Caused by the Interaction with Convective Rolls,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 34–38 (2006).

    Google Scholar 

  140. V. K. Andreev, Yu. A. Gaponenko O. N. Goncharov, and V. V. Pukhnachev, Current Mathematical Models of Convection (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  141. S. M. Drozdov, “Quasi-Periodic Structures in the Problem of Liquid Convection between Horizontal Planes,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 33–45 (2009).

    Google Scholar 

  142. V. V. Kolmychkov, O. S. Mazhorova, Yu. P. Popov, and O. V. Shcheritsa, “Numerical Investigation of the Stability of Roll Convection,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 14–28 (2009).

    Google Scholar 

  143. T. P. Lyubimova, D. V. Lyubimov, V. A. Morozov, et al., “Stability of Convection in a Horizontal Channel Subjected to a Longitudinal Temperature Gradient. 1. Effect of Aspect Ratio and Prandtl Number,” J. Fluid Mech. 635, 275–295 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  144. P. Colinet, J.-C. Legros, and M. G. Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities (Wiley-VCH, Berlin, 2001).

    Book  MATH  Google Scholar 

  145. A. A. Nepomnyashchy, M. G. Velarde, and P. Colinet, Interfacial Phenomena and Convection (Chapman and Hall, Boca Raton, 2002).

    MATH  Google Scholar 

  146. R. V. Birikh, V. A. Briskman, M. G. Velarde, and J.-C. Legros, Liquid Interfacial Systems: Oscillations and Instability (Marcel Dekker Inc., New York-Basel, 2003).

    Google Scholar 

  147. A. A. Nepomnyashchy, I. B. Simanovskii, J.-C. Legros, Interfacial Convection in Multilayer Systems (Springer, New York, 2006).

    MATH  Google Scholar 

  148. G. A. Ostroumov, Free Convection Conditions of the Internal Problem (Gostekhteoretizdat, Moscow, 1952) [in Russian].

    Google Scholar 

  149. R. V. Birikh, “Thermocapillary Convection in a Horizontal Layer of Fluid,” Prikl. Mekh. Tekh. Fiz. No. 3, 69–72 (1966) [Appl. Mech. Tech. Phys. No. 3, 43–44 (1966)]

    Google Scholar 

  150. T. Doi and J. N. Koster, “Thermocapillary Convection in Two Immiscible Liquid Layers with Free Surface,” Phys. Fluids, A 5(8), 1914–1927 (1993).

    Article  ADS  MATH  Google Scholar 

  151. V. B. Bekezhanova, “Convective Instability of Marangoni-Poiseuille Flow under a Longitudinal Temperature Gradient,” Prikl. Mekh. Tekh. Fiz. 52(1), 92–100 (2011) [Appl. Mech. Tech. Phys. 52 (1), 74–81 (2011)].

    MathSciNet  Google Scholar 

  152. L. G. Napolitano, “PlaneMarangoni-Poiseulle Flow of Two Immiscible Fluids,” Acta Astronaut. 7(4), 461–478 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  153. V. B. Bekezhanova, “Change in the Type of Instability of Steady Two-Layer Fluid Flow in an Inclined Channel,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 24–35 (2011).

    Google Scholar 

  154. V. K. Andreev and V. B. Bekezhanova, “Small Perturbations of Steady Thermocapillary Two-Layer Flow in a Plane Layer with a Moving Boundary,” Zh. Sib. Feder. Univ., Ser. Mat. Fiz., No. 4, 434–444 (2011).

    Google Scholar 

  155. D.-M. Mo, Y.-R. Li, and W.-Y. Shi, “Linear-Stability Analysis of Thermocapillary Flow in an Annular Two-Layer System with upper Rigid Wall,” Microgravity Sci. Technol. 23(1), S43–S48 (2011).

    Article  Google Scholar 

  156. A. A. Nepomnyashchy and I. B. Simanovskii, “Decomposition of a Two-Layer thin Liquid Film Flowing under the Action of Marangoni Stresses,” Phys. Fluids 18, 112101 (2006).

    Article  ADS  Google Scholar 

  157. A. A. Nepomnyashchy and I. B. Simanovskii, “The Influence of Gravity on the Dynamics of Non-Isothermic Ultra-Thin Two-Layer Films,” Microgravity Sci. Technol. 21(1), S261–S269 (2009).

    Article  Google Scholar 

  158. A. A. Nepomnyashchy and I. B. Simanovskii, “Instabilities and Ordered Patterns in Nonisothermal Ultrathin Bilayer Fluid Films,” Phys. Rev. Lett. 102, 164501 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Andreev.

Additional information

Original Russian Text © V.K. Andreev, V.B. Bekezhanova.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 54, No. 2, pp. 3–20, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, V.K., Bekezhanova, V.B. Stability of non-isothermal fluids (Review). J Appl Mech Tech Phy 54, 171–184 (2013). https://doi.org/10.1134/S0021894413020016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894413020016

Keywords

Navigation