Skip to main content
Log in

Binary teaching-learning-based optimization algorithm is used to investigate the superscattering plasmonic nanodisk

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A new efficient binary optimization method based on Teaching-Learning-Based Optimization (TLBO) algorithm is proposed to design an array of plasmonic nanodisks in order to achieve maximum scattering coefficient spectrum. In binary TLBO (BTLBO), a group of learner consists of a matrix with binary entries; control the presence (‘1’) or the absence (‘0’) of nanodisks in the array. Simulation results show that scattering coefficient strongly depends on the localized position of nanoparticles and non-periodic structures have more appropriate response in term of scattering coefficient. This approach can be useful in optical applications such as plasmonic nanoantennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).

    Article  ADS  Google Scholar 

  2. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, Science 305, 1269 (2004).

    Article  ADS  Google Scholar 

  3. E. Katz and I. Willner, Angew. Chem. 43, 6042 (2004).

    Article  Google Scholar 

  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  5. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, Nano Lett. 9, 1768 (2005).

    Article  ADS  Google Scholar 

  6. K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).

    Article  ADS  Google Scholar 

  7. S. V. Boriskina, A. Gopinath, and L. D. Negro, Opt. Express 16, 18813 (2008).

    Article  ADS  Google Scholar 

  8. M. Reza Hormozi-Nezhad, P. Karami, and H. Robatjazi, RSC Adv. 3, 7726 (2013). doi 10.1039/C3RA40280K

    Article  Google Scholar 

  9. G. O. Kawamura, M. Nogami, and A. Matsuda, J. Nanomaterials 2013, 631350(17) (2013). doi 10.1155/ 2013/631350

    Article  Google Scholar 

  10. E. C. le Ru and P. G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier Science, Amsterdam, 2008).

    Google Scholar 

  11. C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, Lab Chip 12, 574 (2012).

    Article  Google Scholar 

  12. C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, Nanotechnology 21, 415301 (2010).

    Article  Google Scholar 

  13. H. Y. Wu, C. J. Choi, and B. T. Cunningham, Small 8, 2878 (2012).

    Article  Google Scholar 

  14. A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).

    Article  ADS  Google Scholar 

  15. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, Phys. Rev. Lett. 103, 153901 (2009).

    Article  ADS  Google Scholar 

  16. A. Alù and N. Engheta, Phys. Rev. Lett. 102, 233901 (2009).

    Article  ADS  Google Scholar 

  17. P. Y. Chen, J. Soric, and A. Alù, Adv. Mater. 24, OP281 (2012).

    Google Scholar 

  18. P. Y. Chen and A. Alù, ACS Nano 5, 5855 (2011).

    Article  Google Scholar 

  19. S. Xu, Y. Wang, B. Zhang, and H. Chen, Sci. China Inform. Sci. 56, 120408(11) (2013). doi 10.1007/ s11432-013-5033-010

    Google Scholar 

  20. T. Yang, H. Chen, X. Luo, and H. Ma, Opt. Express 16, 18545 (2008).

    Article  ADS  Google Scholar 

  21. S. Nie and S. R. Emory, Science 275, 1102 (1997).

    Article  Google Scholar 

  22. J. B. Jackson and N. J. Halas, Proc. Natl. Acad. Sci. USA 101, 17930 (2004).

    Article  ADS  Google Scholar 

  23. R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, J. Phys. Chem. C 114, 7378 (2010).

    Article  Google Scholar 

  24. H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 73, 3815 (1998).

    Article  ADS  Google Scholar 

  25. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, Nano Lett. 8, 3983 (2008).

    Article  ADS  Google Scholar 

  26. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garcia de Abajo, Phys. Rev. Lett. 90, 057401 (2003).

    Article  ADS  Google Scholar 

  27. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).

    Article  ADS  Google Scholar 

  28. H. A. Atwater and A. Polman, Nature Mater. 9, 205 (2010).

    Article  ADS  Google Scholar 

  29. W. H. Wee and J. B. Pendry, New J. Phys. 11, 073033 (2009).

    Article  ADS  Google Scholar 

  30. W. Jiang, B. Xu, Q. Cheng, T. Cui, and G. Yu, J. Opt. Soc. Am. A 30, 1698 (2013).

    Article  ADS  Google Scholar 

  31. Z. Ruan and S. Fan, Phys. Rev. Lett. 105, 013901 (2010).

    Article  ADS  Google Scholar 

  32. Z. Ruan and S. Fan, Appl. Phys. Lett. 98, 043101(2011).

    Article  ADS  Google Scholar 

  33. A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, Opt. Express 21, 10454 (2014).

    Article  ADS  Google Scholar 

  34. A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, Appl. Phys. Lett. 105, 011109 (2014).

    Article  ADS  Google Scholar 

  35. J. Becker, A. Trügler, and A. Jakab, Plasmonics J. 2, 161 (2010).

    Article  Google Scholar 

  36. F. Emami and M. Akhlaghi, J. Photon. Technol. Lett. 24, 1349 (2012).

    Article  ADS  Google Scholar 

  37. M. Akhlaghi and F. Emami, J. Opt. Soc. Korea 17, 237 (2013).

    Article  Google Scholar 

  38. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd ed. (Artech House, Norwood, MA, 2000).

    MATH  Google Scholar 

  39. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, New York, 2002).

    MATH  Google Scholar 

  40. B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).

    Article  ADS  Google Scholar 

  41. C. Forestiere, G. Miano, S. V. Boriskina, and L. D. Negro, Opt. Express 17, 9648 (2009).

    Article  ADS  Google Scholar 

  42. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza- Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, Chem. Soc. Rev. 37, 1792 (2008).

    Article  Google Scholar 

  43. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).

    Book  Google Scholar 

  44. R. V. Roa, V. J. Savsani, and D. P. Vakharia, Comput. Aided Des. 43, 303 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaboli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaboli, M., Akhlaghi, M. Binary teaching-learning-based optimization algorithm is used to investigate the superscattering plasmonic nanodisk. Opt. Spectrosc. 120, 958–963 (2016). https://doi.org/10.1134/S0030400X16060096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16060096

Navigation