Skip to main content
Log in

Studies of Zinc and Zinc Oxide Nanofilms of Different Thickness Prepared by Magnetron Sputtering and Thermal Oxidation

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Polycrystalline zinc films with the thickness of about 20, 40, 60, and 80 nm and mainly granular morphology comprising nearly spherical particles involving hexagonal crystals are obtained by magnetron sputtering on cover glass supports. Subsequently, the prepared layers were subjected to thermal oxidation in the air to obtain transparent zinc oxide layers. The synthesized films are studied by SEM and UV-vis spectroscopy. Based on the obtained spectra, optical properties of the layers are studied as a function of their thickness. The optical band gap Eg for the films with the thickness from 40 to 80 nm is estimated on the level about 3.28 eV similar to the reference value 3.3 eV for bulk zinc oxide, while for the thickness of 20 nm Eg slightly drops to about 3.24 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkocc, J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  ADS  Google Scholar 

  2. A. Janotti and C. G. van de Walle, Rep. Prog. Phys. 72, 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  ADS  Google Scholar 

  3. H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009).

    Book  Google Scholar 

  4. A. Singh and H. L. Vishwakarma, IOSR J. Appl. Phys. 6 (2), 28 (2014)

    Google Scholar 

  5. V. Parihar, M. Raja, and R. Paulose, Rev. Adv. Mater. Sci. 53, 119 (2018)

    Article  Google Scholar 

  6. Ü. Özgür, D. Hofstetter, and H. Morkoç, Proc. IEEE 98, 1255 (2010).

    Article  Google Scholar 

  7. R. K. Rashmi, P. Deepak, and K. P. Saurabh, Res. Developm. Mater. Sci. 3, 265 (2018). https://doi.org/10.31031/RDMS.2018.03.000565

    Article  Google Scholar 

  8. M. R. Khanlary, V. Vahedi, and A. Reyhani, Molecules 17, 5021 (2012). https://doi.org/10.3390/molecules17055021

    Article  Google Scholar 

  9. A. Escobedo-Morales, R. J. Aranda-García, E. Chigo-Anota, A. Pérez-Centeno, A. Méndez-Blas, and C. G. Arana-Toro, Crystals 6, 135 (2016). https://doi.org/10.3390/cryst6100135

    Article  Google Scholar 

  10. R. Chen, C. Zou, X. Yan, and W. Gao, Prog. Nat. Sci. 21, 81 (2011).

    Article  Google Scholar 

  11. V. Ghafouri, M. Shariati, and A. Ebrahimzad, J. Ultrafine Grained Nanostruct. Mater. 46, 19 (2013).

    Google Scholar 

  12. K. Kongjai, S. Choopun, N. Hongsith, and A. Gardchareon, Chiang Mai J. Sci. 38, 39 (2011).

    Google Scholar 

  13. M. R. Khanlary, V. Vahedi, and A. Reyhani, Molecules 17, 5021 (2012). https://doi.org/10.3390/molecules17055021

    Article  Google Scholar 

  14. Y. Liu, X. Xue, Z. Yan, J. Shi, L. Sun, and Y. A. Wu, Mater. Res. 17, 1658 (2014).

    Article  Google Scholar 

  15. C. G. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007).

    Article  Google Scholar 

  16. Z. Liang, Q. Zhang, L. Jiang, and G. Cao, Energy Environ. Sci. 8, 3442 (2015).

    Article  Google Scholar 

  17. L. Zhang and A. Konno, Int. J. Electrochem. Sci. 13, 344 (2018). https://doi.org/10.0964/2018.01.07

    Article  Google Scholar 

  18. S. Chaudhary, A. Umar, K. K. Bhasin, and S. Baskoutas, Materials 11, 287 (2018). https://doi.org/10.3390/ma11020287

    Article  ADS  Google Scholar 

  19. T. A. T. Do, T. G. Ho, T. H. Bui, Q. N. Pham, H. T. Giang, T. T. Do, D. V. Nguyen, and D. L. Tran, Beilstein J. Nanotechnol. 9, 771 (2018).

    Article  Google Scholar 

  20. N. L. Hung, J. Korean Phys. Soc. 57, 1784 (2010).

    Article  Google Scholar 

  21. J.-H. Lee, J.-Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, Nanomaterials 8, 902 (2018). https://doi.org/10.3390/nano8110902

    Article  Google Scholar 

  22. S. Knobelspies, B. Bierer, A. Daus, A. Takabayashi, G. A. Salvatore, G. Cantarella, A. O. Perez, J. Wöllenstein, S. Palzer, and G. Tröster, Sensors 18, 358 (2018). https://doi.org/10.3390/s18020358

    Article  ADS  Google Scholar 

  23. A. Singh and H. L. Vishwakarma, Appl. Innov. Res. 1, 11 (2019).

    Google Scholar 

  24. Z. L. Wang, W. Wu, and C. Falconi, MRS Bull. 43, 922 (2018). www.mrs.org/bulletin.

    Article  ADS  Google Scholar 

  25. C. Falcony, M. A. Aguilar-Frutis, and M. García-Hipólito, Micromachines 9, 414 (2018). https://doi.org/10.3390/mi9080414

    Article  Google Scholar 

  26. T. A. Kumar, S. Malathi, C. V. Mythili, and M. Jeyachandran, Int. J. Chemtech Res. 11 (08), 48 (2018).

    Article  Google Scholar 

  27. G. Gasparotto, R. Angelo da Silva, M. Aparecida Zaghete, E. Longo, L. A. Perazolli, and T. Mazon, Mater. Res. 21, e20170796 (2018). https://doi.org/10.1590/1980-5373-MR-2017-0796

    Article  Google Scholar 

  28. K. W. Guo, J. Appl. Biotechnol. Bioeng. 2 (5), 197 (2017).

    Google Scholar 

  29. H. E. Swanson and E. Tatge, Natl. Bureau Stand. Circ. (U.S.) 539, 16 (1953).

    Google Scholar 

  30. R. B. Heller, J. McGannon, and A. H. Weber, J. Appl. Phys. 21, 1283 (1950). https://doi.org/10.1063/1.1699591

    Article  ADS  Google Scholar 

  31. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).

    Article  Google Scholar 

  32. B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, Phys. Status Solidi B 252, 1700 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

The reported study was funded by Russian Foundation for Basic Research, project no. 19-02-00167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Vartanyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaev, V.V., Polischuk, V.A., Vartanyan, T.A. et al. Studies of Zinc and Zinc Oxide Nanofilms of Different Thickness Prepared by Magnetron Sputtering and Thermal Oxidation. Opt. Spectrosc. 129, 1033–1037 (2021). https://doi.org/10.1134/S0030400X21070201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21070201

Keywords:

Navigation