Skip to main content
Log in

Sorption of Hg2+, Nd3+, Dy3+, and Uo 2+2 ions at polysiloxane xerogels functionalized with phosphonic acid derivatives

  • Problems of Complexing and Environment Protection
  • Published:
Protection of Metals Aims and scope Submit manuscript

Abstract

The sorption properties of silicas with mono- and bifunctional surface layers containing the complexing fragment ≡Si(CH2)3NHP(S)(OC2H5)2 were studied. It was found that xerogels synthesized by the solgel method (like mesoporous silicas obtained by the template method) can extract mercury(II) ions from acidified solutions (SSC up to 450 mg/g). In a nonporous xerogel with a bifunctional surface layer (≡P=S/-SH), thiol groups proved to be primary sorption sites for Hg2+ ions; part of the ligand groups were inaccessible to metal ions. Xerogels containing the phosphonic acid residues ≡Si(CH2)2P(O)(OH)2 sorbed uranyl and lanthanide ions from their nitrate solutions. The resulting surface complexes contained two (for the UO 2+2 ion) or three innersphere ligand groups (for the Nd3+ and Dy3+ ions). The maximum SSCs were 340 mg/g for the uranyl ion and 120 mg/g for the lanthanide ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khimiya privitykh poverkhnostnykh soedinenii (The Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: Fizmatlit, 2003, p. 592.

    Google Scholar 

  2. Voronkov, M.G., Vlasova, N.N., and Pozhidaev, Yu.N., Appl. Organomet. Chem., 2000, vol. 14, p. 287.

    Article  CAS  Google Scholar 

  3. Kholin, Yu.V. and Zaitsev, V.N., Kompleksy na poverkhnosti khimicheski modifitsirovannykh kremnezemov (Surface Complexes at Chemically Modified Silicas), Kharkiv: Folio, 1997, p. 136.

    Google Scholar 

  4. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, San Diego: Academic, 1990, p. 908.

    Google Scholar 

  5. Zub, Yu.L. and Chuiko, A.A., Colloidal Silica: Fundamentals and Applications, Bergna, H.E. and Roberts, W.O., Eds., Boca Raton: CRC, 2006, p. 397.

    Google Scholar 

  6. Zub, Yu.L., Mel’nyk, I.V., Stolyarchuk, N.V., et al., Khimiya, fizika i tekhnologiya poverkhnosti (The Chemistry, Physics, and Technology of the Surface), Kiev: Naukova Dumka, 2006, pp. 165–204.

    Google Scholar 

  7. Dudarko, O.A., Semenii, V.Ya., Dabrowski, A., and Zub, Yu.L., Kolloidn. Zh., 2007, vol. 69, no. 1, pp. 72–80.

    Google Scholar 

  8. Dudarko, O.A., Melnyk, I.V., Zub, Yu.L., Chuiko, A.A., and Dabrowski, A., Neorg. Mater., 2006, vol. 42, no. 5, pp. 413–420.

    Google Scholar 

  9. Dudarko, O.A., Zub, Yu.L., and Dabrowski, A., Zh. Prikl. Khim., 2007 (in press).

  10. Dudarko, O.A., Melnyk, I.V., Zub, Yu.L., and Dabrowski, A., Stud. Surf. Sci. Catal., Amsterdam: Elsevier, 2006, pp. 479–486.

    Google Scholar 

  11. Dudarko, O.A., Melnyk, I.V., Zub, Yu.L., et al., Kolloidn. Zh., 2005, vol. 67, no. 6, pp. 753–758.

    Google Scholar 

  12. Dabrowski, A., Barchak, M., Dudarko, O.A., and Zub, Yu.L., Pol. Chem. J., 2007, vol. 81, pp. 475–483.

    CAS  Google Scholar 

  13. Gladyshev, V.P., Levitskaya, S.A., and Filippova, L.M., Analiticheskaya khimiya rtuti (The Analytical Chemistry of Mercury), Moscow: Nauka, 1974, p. 227.

    Google Scholar 

  14. Nemodruk, A.A. and Glukhova, L.P., Zh. Anal. Khim., 1963, vol. 18, no. 1, pp. 94–97.

    Google Scholar 

  15. Schwarzenbach, G. and Flaschka, H., Die Komplexometrische Titration, Stuttgart: Ferdinand Enke, 1965.

    Google Scholar 

  16. Brunauer, J.S., Emmet, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, p. 309.

    Article  CAS  Google Scholar 

  17. Barret, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, p. 373.

    Article  Google Scholar 

  18. Dobryanskaya, G.I., Melnyk, I.V., Zub, Yu.L., et al., Zh. Fiz. Khim., 2006, vol. 80, no. 6, pp. 1071–1077.

    Google Scholar 

  19. Lin-Vien, D., Colthup, N.B., Fateley, W.G., and Grasselli, J.G., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, London: Academic, 1991, pp. 263–275.

    Google Scholar 

  20. Dobryanskaya, G.I., Goncharik, V.P., Kozhara, L.I., et al., Koord. Khim., 2007 (in press).

  21. Aliev, A., Ou, D.L., Ormsby, B., and Sullivan, A.C., J. Mater. Chem., 2000, vol. 10, pp. 2758–2764.

    Article  CAS  Google Scholar 

  22. Saldadze, K.M. and Kopylova-Valova, V.D., Kompleksoobrazuyushchie ionity (kompleksity) (Complexing Ion-Exchanging Resins (Complexites)), Moscow: Khimiya, 1980, p. 336.

    Google Scholar 

  23. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Dudarko, V.P. Goncharik, V.Ya. Semenii, Yu.L. Zub, 2008, published in Zashchita Metallov, 2008, Vol. 44, No. 2, pp. 207–212.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudarko, O.A., Goncharik, V.P., Semenii, V.Y. et al. Sorption of Hg2+, Nd3+, Dy3+, and Uo 2+2 ions at polysiloxane xerogels functionalized with phosphonic acid derivatives. Prot Met 44, 193–197 (2008). https://doi.org/10.1134/S003317320802015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003317320802015X

PACS numbers

Navigation