Skip to main content
Log in

Graphene Oxide: Structure, Properties, Synthesis, and Reduction (A Review)

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

We review state-of-the-art progress in the field of graphene oxide, a material that has a wide range of applications due to its unique properties, for example, the dielectric properties of graphene oxide can be used in memristors, the use of different degrees of reduction allows creating multipolar electrodes of lithium-ion batteries and supercapacitors, various oxygen-containing functional groups contained on the surface of graphene oxide can be a substrate for the formation of transition metal nanoparticles and the creation of photocatalysts or chemical and biological sensors based on such a composite, graphene oxide membranes are capable of selective separation of gases and metal ions. In this regard, the information presented in the article about the structure, properties, methods of synthesis, and reduction of graphene oxide will be in demand in laboratory and technological processes when designing and predicting the characteristics of materials and devices based on graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. F. Romero, A. Toral-Lopez, A. Ohata, et al., Nanomaterials 9, 897 (2019). https://doi.org/10.3390/nano9060897

    Article  CAS  PubMed Central  Google Scholar 

  2. M. Wang, X. Lian, Y. Pan, et al., Appl. Phys. A 120, 403 (2015). https://doi.org/10.1007/s00339-015-9208-y

    Article  CAS  Google Scholar 

  3. S. Porro, E. Accornero, C. Pirri, et al., Carbon 85, 383 (2015). https://doi.org/10.1016/j.carbon.2015.01.011

    Article  CAS  Google Scholar 

  4. H. Kim, K.-Y. Park, J. Hong, et al., Sci. Rep. 1, 1 (2014).https://doi.org/10.1038/srep05278

    Article  CAS  Google Scholar 

  5. M. H. Ervin, L. B. Levine, B. M. Nichols, et al., J. Appl. Electrochem. 46, 1075 (2016). https://doi.org/10.1007/s10800-016-0991-8

    Article  CAS  Google Scholar 

  6. E. Y. Buslaeva, S. V. Kraevskii, Y. A. Groshkova, et al., Russ. J. Inorg. Chem. 65, 5 (2020). https://doi.org/10.1134/s0036023620010040

    Article  CAS  Google Scholar 

  7. B. Xu, J. Huang, L. Ding, et al., Mater. Sci. Eng. C 107, 292 (2020). https://doi.org/10.1016/j.msec.2019.110329

    Article  CAS  Google Scholar 

  8. K. Mahato, B. Purohit, K. Bhardwaj, et al., Biosens. Bioelectron. 142, 349 (2019). https://doi.org/10.1016/j.bios.2019.111502

    Article  CAS  Google Scholar 

  9. N. P. Boroznina, I. V. Zaporotskova, S. V. Boroznin, et al., Russ. J. Inorg. Chem. 64, 74 (2019). https://doi.org/10.1134/S0036023619010029

    Article  CAS  Google Scholar 

  10. Q. Liu, K. M. Gupta, Q. Xu, et al., Sep. Purif. Technol. 209, 419 (2019). https://doi.org/10.1016/j.sePur.2018.07.044

    Article  CAS  Google Scholar 

  11. ISO/TS80004-13:2017, Nanotechnologies—Vocabulary—Part 13: Graphene and related two-dimensional (2D) materials.

  12. A. Ferrari, F. Bonaccorso, V. Falko, et al., Nanoscale 7, 4598 (2015). https://doi.org/10.1039/C4NR01600A

    Article  CAS  PubMed  Google Scholar 

  13. A. Bianco, H.-M. Cheng, T. Enoki, et al., Carbon 65, 1 (2013). https://doi.org/10.1016/j.carbon.2013.08.038

    Article  CAS  Google Scholar 

  14. M. Cutroneo, L. Torrisi, V. Havranek, et al., Vacuum 165, 134 (2019). https://doi.org/10.1016/j.vacuum.2019.04.012

    Article  CAS  Google Scholar 

  15. B. C. Brodie, Philos. Trans. R. Soc. 149, 249 (1859). https://doi.org/10.1098/rstl.1859.0013.JSTOR 108699

  16. P. Feicht, J. Biskupek, T. E. Gorelik, et al., Chem.—Eur. J. 25, 8955 (2019). https://doi.org/10.1002/chem.201901499

    Article  CAS  PubMed  Google Scholar 

  17. A. V. Talyzin, G. Mercier, A. Klechikov, et al., Carbon 115, 430 (2017). https://doi.org/10.1016/j.carbon.2016.12.097

    Article  CAS  Google Scholar 

  18. R. E. Peierls, Ann. I. H. Poincare 5, 177 (1935).

    Google Scholar 

  19. L. D. Landau, II. Phys. Z. Sowjetunion 11, 26 (1937).

    CAS  Google Scholar 

  20. P. R. Wallace, Phys. Rev. 71, 622 (1947). https://doi.org/10.1103/PhysRev.71.622

    Article  CAS  Google Scholar 

  21. G. Ruess and F. Vogt, Monatsh. Chem. 78, 222 (1948). https://doi.org/10.1007/BF01141527

    Article  CAS  Google Scholar 

  22. C. Galande, W. Gao, A. Mathkar, et al., Part. Part. Syst. Charact. 31, 619 (2014). https://doi.org/10.1002/Psc.201300232

    Article  CAS  Google Scholar 

  23. C. Oshima and A. Nagashima, J. Phys.: Condens. Matter 9, 1 (1997). https://doi.org/10.1088/0953-8984/9/1/004

    Article  CAS  Google Scholar 

  24. H. P. Boehm, R. Setton, and E. Stump, Carbon 24, 241 (1986). https://doi.org/10.1016/0008-6223(86)90126-0

    Article  CAS  Google Scholar 

  25. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005). https://doi.org/10.1038/nature04233

    Article  CAS  PubMed  Google Scholar 

  26. N. Vats, S. Rauschenbach, W. Sigle, et al., Nanoscale 10, 4952 (2018). https://doi.org/10.1039/c8nr00402a

    Article  CAS  PubMed  Google Scholar 

  27. C. Gomez-Navarro, J. C. Meyer, R. S. Sundaram, et al., Nano Lett. 10, 1144 (2010). https://doi.org/10.1021/nl9031617

    Article  CAS  PubMed  Google Scholar 

  28. C. Galande, W. Gao, A. Mathkar, A. M. Dattelbaum, et al., Part. Part. Syst. Charact. 31, 619 (2014). https://doi.org/10.1002/ppsc.201300232

    Article  CAS  Google Scholar 

  29. A. E. Oliveira, G. B. Braga, C. R. Tarley, et al., Mater. Sci. 53, 12005 (2018). https://doi.org/10.1007/s10853-018-2473-3

    Article  CAS  Google Scholar 

  30. D. Mendonca, A. Lima, J. Roldao, et al., Mater. Chem. Phys. 215, 203 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.022

    Article  CAS  Google Scholar 

  31. A. Nekahi, S. Marashi, D. Fatmesari, et al., Bull. Mater. Sci. 38, 1717 (2015). https://doi.org/10.1007/s12034-015-1049-y

    Article  CAS  Google Scholar 

  32. J. P. Mendonca, A. H. Lima, G. M. Junqueira, et al., Mater. Res. Express 3, 055020 (2016). https://doi.org/10.1088/2053-1591/3/5/055020

    Article  CAS  Google Scholar 

  33. D. Yin, N. Lu, Z. Li, et al., J. Chem. Phys. 139, 084704 (2013). https://doi.org/10.1063/1.4818539

    Article  CAS  PubMed  Google Scholar 

  34. Q. Khan, A. Shaur, T. A. Khan, et al., Cogent Chem. 3, 1298980 (2017). https://doi.org/10.1080/23312009.2017.1298980

    Article  CAS  Google Scholar 

  35. A. Lerf, H. He, M. Forster, et al., J. Phys. Chem. B 102, 4477 (1998).

    Article  CAS  Google Scholar 

  36. E. Aliyev, V. Filiz, M. M. Khan, et al., Nanomaterials 9, 1180 (2019). https://doi.org/10.3390/nano9081180

    Article  CAS  PubMed Central  Google Scholar 

  37. Q. Qiao, C. Liu, W. Gao, et al., Carbon 143, 566 (2019). https://doi.org/10.1016/j.carbon.2018.11.063

    Article  CAS  Google Scholar 

  38. D. R. Dreyer, A. D. Todd, and C. W. Bielawski, Chem. Soc. Rev. 43, 5288 (2014). https://doi.org/10.1039/c4cs00060a

    Article  CAS  PubMed  Google Scholar 

  39. F. Zhang, S. Li, Q. Zhang, et al., J. Mol. Liq. 276, 338 (2019). https://doi.org/10.1016/j.molliq.2018.12.009

    Article  CAS  Google Scholar 

  40. P. N. D’yachkov, Russ. J. Inorg. Chem. 63, 55 (2018). https://doi.org/10.1134/s0036023618010072

    Article  CAS  Google Scholar 

  41. P. Wuamprakhon, A. Krittayavathananon, N. Ma, et al., J. Electroanal. Chem. 808, 124 (2018). https://doi.org/10.1016/j.jelechem.2017.12.003

    Article  CAS  Google Scholar 

  42. A. K. Reshetnikova, A. I. Zvyagina, Y. Y. Enakieva, et al., Colloid J. 80, 684 (2018). https://doi.org/10.1134/s1061933x1806011x

    Article  CAS  Google Scholar 

  43. Y. Poo-Arporn, S. Pakapongpan, N. Chanlek, et al., Sensor. Actuat. B: Chem. 284, 164 (2019). https://doi.org/10.1016/j.snb.2018.12.121

    Article  CAS  Google Scholar 

  44. A. Abdel-Motagaly, W. El Rouby, S. El-Dek, et al., Diamond Relat. Mater. 86, 20 (2018). https://doi.org/10.1016/j.diamond.2018.04.006

    Article  CAS  Google Scholar 

  45. U. P. Gawai, D. K. Gaikwad, H. A. Khawal, et al., Phys. Chem. Chem. Phys. 21, 1294 (2019). https://doi.org/10.1039/c8cp05267k

    Article  CAS  PubMed  Google Scholar 

  46. D. Chen, H. Feng, and J. Li, Chem. Rev. 112, 6027 (2012). https://doi.org/10.1021/cr300115g

    Article  CAS  PubMed  Google Scholar 

  47. L. A. Openov and A. I. Podlivaev, Phys. Solid State 57, 1477 (2015). https://doi.org/10.1134/s1063783415070240

    Article  CAS  Google Scholar 

  48. V. Mohan, D. Liu, K. Jayaraman, et al., Adv. Mater. Lett. 7, 421 (2016).

    Article  CAS  Google Scholar 

  49. F. Perrozzi, S. Prezioso, and L. Ottaviano, J. Phys.: Condens. Matter 27, 013002 (2014). https://doi.org/10.1088/0953-8984/27/1/013002

    Article  CAS  Google Scholar 

  50. D. Y. Kornilov and L. A. Kasharina, Inorg. Mater.: Appl. Res. 10, 1072 (2019). https://doi.org/10.1134/s2075113319050125

    Article  Google Scholar 

  51. F. Perrozzi, S. Croce, E. Treossi, et al., Carbon 77, 473 (2014). https://doi.org/10.1016/j.carbon.2014.05.052

    Article  CAS  Google Scholar 

  52. R. Muzyka, S. Drewniak, T. Pustelny, et al., Materials 11, 1050 (2018). https://doi.org/10.3390/ma11071050

    Article  CAS  PubMed Central  Google Scholar 

  53. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, MN: 160 (1992).

    Google Scholar 

  54. V. V. Kuznetsov and S. A. Bochkor, Russ. J. Inorg. Chem. 63, 917 (2018). https://doi.org/10.1134/S0036023618070124

    Article  CAS  Google Scholar 

  55. H. Estrade-Szwarckopf, Carbon 42, 1713 (2004). https://doi.org/10.1016/j.carbon.2004.03.005

    Article  CAS  Google Scholar 

  56. L. Stobinski, B. Lesiak, A. Malolepszy, et al., J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014). https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  57. W. Li, U. W. Gedde, and H. Hillborg, IEEE Trans. Dielectr. Electr. Insul. 23, 1156 (2016). https://doi.org/10.1109/TDEI.2015.005485

    Article  CAS  Google Scholar 

  58. A. Haque, M. Mamun, M. F. Taufique, et al., IEEE Trans. Magn. 54 (12), (2018). https://doi.org/10.1109/TMAG.2018.2873508

  59. C. Zhang, D. M. Dabbs, L. -M. Liu, et al., J. Phys. Chem. C 119, 18167 (2015). https://doi.org/10.1021/acs.jpcc.5b02727

    Article  CAS  Google Scholar 

  60. J. Ding, H. Zhao, Q. Wang, et al., Nanoscale 9, 16871 (2017). https://doi.org/10.1039/C7NR06667H

    Article  CAS  PubMed  Google Scholar 

  61. E. Treossi, M. Melucci, A. Liscio, et al., J. Am. Chem. Soc. 131, 15576 (2009). https://doi.org/10.1021/ja9055382

    Article  CAS  PubMed  Google Scholar 

  62. J. Russier, E. Treossi, A. Scarsi, et al., Nanoscale 5, 11234 (2013). https://doi.org/10.1039/c3nr03543c

    Article  CAS  PubMed  Google Scholar 

  63. J. Song, X. Wang, and C. T. Chang, J. Nanomater. 2014, 276143 (2014). https://doi.org/10.1155/2014/276143

    Article  CAS  Google Scholar 

  64. T. F. Emiru and D. W. Ayele, Egyptian J. Basic Appl. Sci. 4, 74 (2017). https://doi.org/10.1016/j.ejbas.2016.11.002

    Article  Google Scholar 

  65. A. M. Ziatdinov, N. S. Saenko, and P. G. Skrylnik, Russ. J. Inorg. Chem. 65, 133 (2020). https://doi.org/10.1134/s0036023620010210

    Article  CAS  Google Scholar 

  66. J. Chen, B. Yao, C. Li, et al., Carbon 64, 225 (2013). https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  67. C. Botas, P. Alvarez, P. Blanco, et al., Carbon 65, 156 (2013). https://doi.org/10.1016/j.carbon.2013.08.009

    Article  CAS  Google Scholar 

  68. A. Smith, M. LaChance, S. Zeng, et al., Nano Mater. Sci. 1, 31 (2019).

    Google Scholar 

  69. D. K. Becerra-Paniagua, M. Sotelo-Lerma, H. Hu, et al., J. Mater. Sci.: Mater. El. (2019). https://doi.org/10.1007/s10854-019-00683-9

  70. M. N. Chernysheva, A. Y. Rychagov, and D. Y. Kornilov, J. Electroanal. Chem. 113774 (2020). https://doi.org/j.jelechem.2019.113774

  71. Y. Hou, S. Lv, L. Liu, et al., Ceram. Int. 46, 2392 (2020). https://doi.org/10.1016/j.ceramint.2019.09.231

    Article  CAS  Google Scholar 

  72. N. Kovtyukhova, E. Buzaneva, and A. Senkevich, Carbon 36, 549 (1998).

    Article  CAS  Google Scholar 

  73. N. L. Kovtyukhova, P. J. Ollivier, B. R. Martin, et al., Chem. Mater. 11, 771 (1999).

    Article  CAS  Google Scholar 

  74. S. Duan, X. Wu, K. Zeng, et al., Carbon 159, 527 (2020). https://doi.org/10.1016/j.carbon.2019.12.091

    Article  CAS  Google Scholar 

  75. Q. Wang, M. Yu, J. Gong, et al., Mater. Express 9, 668 (2019). https://doi.org/10.1166/mex.2019.1547

    Article  CAS  Google Scholar 

  76. R. Goudarzi and G. Hashemi Motlagh, Heliyon 5, e02595 (2019). https://doi.org/10.1016/j.heliyon.2019.e02595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Q. Guo, Z. Yang, D. Guo, et al., Materials, 12, 3130 (2019). https://doi.org/10.3390/ma12193130

    Article  CAS  PubMed Central  Google Scholar 

  78. J. Tian, L. Guo, X. Yin, et al., Mater. Chem. Phys. 223, 1 (2019). https://doi.org/10.1016/j.matchemphys.2018.10.039

    Article  CAS  Google Scholar 

  79. H. P. Boehm, Adv. Catal., 179 (1966). https://doi.org/10.1016/s0360-0564(08)60354-5

  80. P. Ramesh, S. Bhagyalakshmi, and S. Sampath, J. Colloid Interface Sci. 274, 95 (2004). https://doi.org/10.1016/j.jcis.2003.11.030

    Article  CAS  PubMed  Google Scholar 

  81. O. Y. Posudievsky, O. A. Kozarenko, O. A. Khazieieva, et al., J.Mater. Chem. A 1, 6658 (2013). https://doi.org/10.1039/c3ta10542c

    Article  CAS  Google Scholar 

  82. H. Gao, C. Xue, G. Hu, K. Zhu, et al., Ultrason. Sonochem. 37, 120 (2017). https://doi.org/10.1016/j.ultsonch.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  83. M. C. Kim, G. S. Hwang, and R. S. Ruoff, J Chem. Phys. 131 (2009). https://doi.org/10.1063/1.3197007

  84. X. Gao, J. Jang, and S. Nagase, J. Phys Chem. 114, 832 (2009). https://doi.org/10.1021/jp909284g

    Article  CAS  Google Scholar 

  85. H.-K. Jeong, Y. P. Lee, M. H. Jin, et al., Chem. Phys. Lett. 470, 255 (2009).

    Article  CAS  Google Scholar 

  86. D. Yang, A. Velamakanni, G. Bozoklu, et al., Carbon 47, 145 (2009).

    Article  CAS  Google Scholar 

  87. C. Mattevi, G. Eda, S. Agnoli, et al., Adv. Funct. Mater. 19, 77 (2009).

    Article  Google Scholar 

  88. H. C. Schniepp, J.-L. Li, M. J. McAllister, et al., J. Phys. Chem. B 110, 8535 (2006).

    Article  CAS  Google Scholar 

  89. H. A. Becerril, J. Mao, Z. Liu, et al., ACS Nano 2, 463 (2008).

    Article  CAS  Google Scholar 

  90. X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).

    Article  CAS  Google Scholar 

  91. D. W. Boukhvalov and M. I. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008).

    Article  CAS  Google Scholar 

  92. A. Bagri, C. Mattevi, M. Acik, et al., Nat. Chem. 2, 581 (2011).

    Article  Google Scholar 

  93. S.-J. Li, D.-H. Deng, Q. Shi, et al., Microchim. Acta 177, 325 (2012). https://doi.org/10.1007/s00604-012-0782-9

    Article  CAS  Google Scholar 

  94. R. M. Zakalyukin, E. A. Levkevich, A. S. Orekhov, et al., Russ. J. Inorg. Chem. 63, 1356 (2018). https://doi.org/10.1134/s0036023618100200

    Article  CAS  Google Scholar 

  95. G. K. Ramesha and S. Sampath, J. Phys. Chem. C 113, 7985 (2009).

    Article  CAS  Google Scholar 

  96. Z. Wang, X. Zhou, J. Zhang, et al., J. Phys. Chem. C 113, 14071 (2009).

    Article  CAS  Google Scholar 

  97. Y. Shao, J. Wang, M. Engelhard, et al., J. Mater. Chem. 20, 743 (2010).

    Article  CAS  Google Scholar 

  98. H. S. Toh, A. Ambrosi, C. K. Chua, et al., J. Phys. Chem. C 115, 17647 (2011).

    Article  CAS  Google Scholar 

  99. M. Hilder, B. Winther-Jensen, D. Li, et al., Phys. Chem. Chem. Phys. 13, 9187 (2011).

    Article  CAS  Google Scholar 

  100. V. S. Dilimon and S. Sampath, Thin Solid Films 519, 2323 (2011).

    Article  CAS  Google Scholar 

  101. C. Fu, Y. Kuang, Z. Huang, et al., Chem. Phys. Lett. 499, 250 (2010).

    Article  CAS  Google Scholar 

  102. Y. Harima, S. Setodoi, I. Imae, et al., Electrochim. Acta 56, 5363 (2011).

    Article  CAS  Google Scholar 

  103. J. Kauppilaa, P. Kunnasa, P. Damlina, et al., Electrochim. Acta 89, 84 (2013).

    Article  Google Scholar 

  104. M. Zhou, Y. Wang, Y. Zhai, et al., Chem.—Eur. J. 15, 6116 (2009). https://doi.org/10.1002/chem.200900596

    Article  CAS  PubMed  Google Scholar 

  105. S. Pei, J. Zhao, J. Du, et al., Carbon 48, 4466 (2010).

    Article  CAS  Google Scholar 

  106. S. Stankovich, D. A. Dikin, R. D. Piner, et al., Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  107. M. J. Yoo and H. B. Park, Carbon 141, 515 (2019). https://doi.org/10.1016/j.carbon.2018.10.009

    Article  CAS  Google Scholar 

  108. B. Gurzeda and P. Krawczyk, et al., Electrochim. Acta 310, 96 (2019). https://doi.org/10.1016/j.electacta.2019.04.088

    Article  CAS  Google Scholar 

  109. N. V. Yudina and N. R. Sadykov, Russ. J. Inorg. Chem. 64, 98 (2019). https://doi.org/10.1134/s0036023619010212

    Article  CAS  Google Scholar 

  110. P. P. Edwards, A. Porch, M. O. Jones, et al., Dalton Trans. 19, 2995 (2004).

    Article  Google Scholar 

  111. K. Moon, J. Lee, R. S. Ruoff, et al., Nat. Commun. 1, 73 (2010).

    Article  Google Scholar 

  112. J. M. Coxon and M. A. Townsend, Tetrahedron 63, 5665 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Kornilov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornilov, D.Y., Gubin, S.P. Graphene Oxide: Structure, Properties, Synthesis, and Reduction (A Review) . Russ. J. Inorg. Chem. 65, 1965–1976 (2020). https://doi.org/10.1134/S0036023620130021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620130021

Keywords:

Navigation