Skip to main content
Log in

A novel approach to the explanation the effect of microwave heating on isothermal kinetic of crosslinking polymerization of acrylic acid

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect of microwave heating (MWH) on the isothermal kinetic of crosslinking-polymerization of acrylic acid (CPAA) was investigated. The kinetic curves of CPAA were determined in the temperature range from 303 to 328 K. By applying the model-fitting method it was revealed that the isothermal kinetics of CPAA was described by the first order chemical reaction kinetics model under the MWH and by the second order chemical reaction rate model for the conventionally heated (CH) process. The values of the reaction rate constants of CPAA are about 40 times higher for the microwave heated system than for the conventional heating. The kinetic parameters (activation energy (E a) and pre-exponential factor (lnA)) of the CPAA are significantly lower than the corresponding values for CH process. It was found that the increase in the reaction rate of CPAA for MWH was not a consequence of overheating neither the hot spots in the reaction system. Based on model of selective energy transfer between the reacting molecules and the heating bath a novel explanation of the established effects of MWH on the kinetics of CPAA is given. A quantized nature and value of activation energy was confirmed. The decrease in the value of activation energy of CPAA under microwave heating is explained by the increased value of energy of ground vibration level of resonant oscillator in the AA molecule (v = 1417 cm−1) caused by the absorption of non-thermal energy of MW field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Kingston and S. J. Haswall, Microwave Enhanced Chemistry (American Chemical Society, Washington, 1997).

    Google Scholar 

  2. A. Loupy, Microwave in Organic Synthesis (Wiley-VCH, Weinheim, 2002).

    Book  Google Scholar 

  3. D. Bogdal and A. Prociak, Microwave-Enhanced Polymer Chemistry and Technology (Blackwell, Oxford, UK, 2007).

    Book  Google Scholar 

  4. D. Baghurst and D. Mingos, J. Chem. Soc. Chem. Commun. 9, 674 (1992).

    Article  Google Scholar 

  5. X. Zhang, D. Hayward, and D. Mingos, Chem. Commun. 9, 975 (1999).

    Article  Google Scholar 

  6. K. D. Raner, C. R. Strauss, F. Vyskoc, and L. Mokbel, J. Org. Chem. 58, 950 (1993).

    Article  CAS  Google Scholar 

  7. A. Hoz, A. Diaz-Ortiz, and A. Moreno, Chem. Soc. Rev. 34, 164 (2005).

    Article  Google Scholar 

  8. J. Berlan, P. Giboran, S. Lefeuvre, and C. Marcheno, Tetrahedron Lett. 32, 2363 (1998).

    Article  Google Scholar 

  9. D. Lewis, J. Summers, T. Ward, and J. McCrath, J. Polym. Sci. A: Polym. Chem. 30, 1647 (1992).

    Article  CAS  Google Scholar 

  10. K. Rybakov and V. Semenov, Phys. Rev. B 49, 64 (1994).

    Article  CAS  Google Scholar 

  11. C. Strauss and R. Trainor, Aust. J. Chem. 48, 1665 (1995).

    Article  CAS  Google Scholar 

  12. G. Binner, A. Hassine, and T. Cross, J. Mater. Sci. 30, 5389 (1995).

    Article  CAS  Google Scholar 

  13. D. Stuerga and P. Gaillard, J. Microwave Power Electromagn. Energy 31, 101 (1996).

    Google Scholar 

  14. J. Booske, R. F. Cooper, and S. A. Freeman, Mat. Res. Innovat. 1, 77 (1997).

    Article  CAS  Google Scholar 

  15. C. Shibata, T. Kashima, and K. Ohuchi, Jpn. J. Appl. Phys. 35, 316 (1996).

    Article  CAS  Google Scholar 

  16. L. Perreux and A. Loupy, Tetrahedron 57, 9199 (2000).

    Article  Google Scholar 

  17. C. Blanco and S. Auerbach, J. Phys. Chem. B 107, 2490 (2003).

    Article  CAS  Google Scholar 

  18. V. Conner and G. Tumpsett, J. Phys. Chem. B 111, 2110 (2008).

    Article  Google Scholar 

  19. B. Adnadjevi and J. Jovanović, J. Appl. Polym. Sci. 107, 3579 (2008).

    Article  Google Scholar 

  20. M. E. Brown, D. Dollimore, and A. K. Galway, in Comprehensive Chemical Kinetics, Vol. 22: Reaction in the Solid State, Ed. by C. H. Bamford (Elsevier, Oxford, 1980).

  21. H. Friedman, J. Polym. Sci. C 6, 183 (1964).

    Article  Google Scholar 

  22. H. Tobita, and A. E. Hamilec, Macromolecules 22, 3098 (1988).

    Article  Google Scholar 

  23. S. Vyazovkin and A. Lesnikovich, Thermochim. Acta 165, 273 (1990).

    Article  CAS  Google Scholar 

  24. S. Vyazovkin and C. Wight, Ann. Rev. Phys. Chem. 48, 125 (1997).

    Article  CAS  Google Scholar 

  25. R. Larsson, J. Mol. Catal. 55, 70 (1989).

    Article  CAS  Google Scholar 

  26. A. Pourjavadi, Sh. Barzegar, and F. Zeidebi, React. Funct. Polym. 67, 644 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Adnadjević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adnadjević, B., Jovanović, J. & Potkonjak, B. A novel approach to the explanation the effect of microwave heating on isothermal kinetic of crosslinking polymerization of acrylic acid. Russ. J. Phys. Chem. 87, 2115–2120 (2013). https://doi.org/10.1134/S0036024413130025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413130025

Keywords

Navigation