Skip to main content
Log in

Mechanical Properties of Films of Graphene Oxide Doped with Chitosan

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Films of graphene oxide containing 3 wt % chitosan are obtained via the low-temperature evaporation of a stable mixture of aqueous suspensions. The obtained films are characterized via elemental analysis, IR spectroscopy, and X-ray photoelectron spectroscopy. It is also found that introducing the additive substantially increases the mechanical strength and plasticity of the film. The ultimate tensile strength and elongation upon breaking are thus 85.8 MPa and 2.53% for the composite films, respectively. These values are higher than the ones for a pure film of graphene oxide (55.1 MPa and 0.83%, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, et al., Nano Lett. 7, 3499 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. X. S. Wu, X. B. Li, Z. M. Song, et al., Phys. Rev. Lett. 98, 136801 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. S. Gilje, S. Han, M. Wang, et al., Nano Lett. 7, 3394 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. M. J. McAllister, J. L. Lio, D. H. Adamson, et al., Chem. Mater. 19, 4396 (2007).

    Article  CAS  Google Scholar 

  5. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. H. A. Becerril, J. Mao, Z. Liu, et al., ACS Nano 2, 463 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. X. S. Wu, M. Sprinkle, X. B. Li, et al., Phys. Rev. Lett. 101, 026801 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. D. Li, M. B. Muller, S. Gilje, et al., Nat. Nanotechnol. 3, 101 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. X. Wang, L. J. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. D. W. Boukhvalov and M. I. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, et al., Nano Lett. 7, 3499 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. J. T. Robinson, P. F. Keiths, E. S. Snow, et al., Nano Lett. 8, 3137 (2008). http://pubs.acs.org/ doi/abs/10.1021/nl8013007.

    Article  CAS  PubMed  Google Scholar 

  13. R. R. Nair, H. A. Wu, P. N. Jayaram, et al., Science (Washington, D.C., U. S.) 335 (6067), 442 (2012).

    Article  CAS  Google Scholar 

  14. Y. M. Shulga, S. A. Baskakov, V. A. Smirnov, et al., J. Power Sources 245, 33 (2014).

    Article  CAS  Google Scholar 

  15. A. Eftekhari, Y. M. Shulga, S. A. Baskakov, et al., Int. J. Hydrogen Energy 43, 2307 (2018).

    Article  CAS  Google Scholar 

  16. W. S. Hummers and R. E. Offman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  17. B. A. Komarov and A. I. Albulov, RF Patent No. 2215749 (2001).

  18. Y. Si and E. T. Samulski, Nano Lett. 8, 1679 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. H. K. Jeong, Y. P. Lee, M. H. Jin, et al., Chem. Phys. Lett. 470, 255 (2009).

    Article  CAS  Google Scholar 

  20. L. J. Cote, R. Cruz-Silva, and J. Huang, J. Am. Chem. Soc. 131, 11027 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. P. Karthika, N. Rajalakshmi, and K. S. Dhathathreyan, Soft Nanosci. Lett. 2, 59 (2012).

    Article  CAS  Google Scholar 

  22. W. C. Lee, C. H. Y. X. Lim, and H. Shi, ACS Nano 5, 7334 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. J. Brugnerotto, J. Lizardi, F. M. Goycoolea, et al., Polymer 42, 3569 (2001).

    Article  CAS  Google Scholar 

  24. J. Walton and A. Carrick, The Casa Cookbook–The Casa XPS User’s Manual (Acolyte Science, 2009).

    Google Scholar 

  25. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. P. Seach (Wiley, New York, 1983).

    Google Scholar 

  26. Xiaoming Yang, Yingfeng Tu, L. Liang, et al., Appl. ACS, Mater. Interfaces 2, 1707 (2010).

    Article  CAS  Google Scholar 

  27. Xiluan Wang, Hua Bai, and Zhiyi Yao, J. Mater. Chem. 20, 9032 (2010).

    Article  CAS  Google Scholar 

  28. Donglin Han, Lifeng Yan, Wufeng Chenc, et al., Carbohydr. Polym. 83, 653 (2011).

    Article  CAS  Google Scholar 

  29. Ping-Ping Zuo, Hua-Feng Feng, and Zhi-Zhen Xu, Chem. Centr. J. 7, 39 (2013).

    Article  CAS  Google Scholar 

  30. M. Kumar, React. Funct. Polym. 46, 1 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research, project code no. 17-43-500093A r_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Baskakov.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, B.A., Baskakov, S.A., Baskakova, Y.V. et al. Mechanical Properties of Films of Graphene Oxide Doped with Chitosan. Russ. J. Phys. Chem. 93, 538–541 (2019). https://doi.org/10.1134/S0036024419030105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419030105

Keywords:

Navigation