Skip to main content
Log in

Microstructure and properties of an aluminum D16 alloy subjected to cryogenic rolling

  • Applied Problems of Strength and Plasticity
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The developed dislocation structure that forms during cryorolling of a D16 alloy is found to be retained after short-term heating to 200°C. At higher temperatures, it undergoes recovery and recrystallization with the formation and growth of nanograins. Rolling intensify the decomposition of a preliminarily supersaturated aluminum solid solution, proving the alloy high-strength after artificial aging at a lower temperature and a shorter time as compared to a conventional T6 temper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Khaimovich, “Cryogenic Deformation during Uniform Compression,” Vopr. Atomnoi Nauki i Tekhniki, No. 4, 28–34 (2006).

  2. E. Ma, “Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys,” JOM, April, 49–53 (2006).

  3. R. A. Andrievskii and A. M. Glezer, “Strength of Nanostructures,” Usp. Fiz. Nauk 174(4), 337–358 (2009).

    Article  Google Scholar 

  4. J. Yin, J. Lu, H. Ma, and P. Zhang, “Nanostructural Formation of the Grained Aluminum Alloy by Severe Plastic Deformation at Cryogenic Temperature,” J. Mater. Sci. 39, 2851–2854 (2004).

    Article  CAS  Google Scholar 

  5. Y. S. Ii, N. R. Tao, and K. Lu, “Microstractural Evolution and Nanostructure Formation in Copper during Dynamic Plastic Deformation at Cryogenic Temperatures,” Acta Mater. 56, 230–241 (2008).

    Article  Google Scholar 

  6. V. A. Moskalenko and A. R. Smirnov, “Nanocrystalline Titanium Produced by a Cryomechanical Method: Microstructure and Mechanical Properties,” Fiz. Nizk. Temp. 35(11), 1160–1164 (2009).

    Google Scholar 

  7. T. N. Kon’kova, S. Yu. Mironov, and A. V. Korznikov, “Effect of Cryogenic Rolling on the Microstructure and Mechanical Properties of Copper,” Uprochnyayushchie Tekhnologii i Pokrytiya, No. 9, 40–47 (2009).

  8. S. K. Panigrahi and R. Jayaganthan, “Comparative Study on Mechanical Properties of Al 7075 Alloy Processed by Rolling at Cryogenic Temperature and Room Temperature,” Mat. Sci. Forum. 584–586, 734–740 (2008).

    Article  Google Scholar 

  9. S. Cheng, Y. H. Zhao, Y. T. Zhu, and E. Ma, “Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-precipitation,” Acta Mater. 55, 5822–5832 (2007).

    Article  CAS  Google Scholar 

  10. Y. B. Lee, D. H. Shin, K.-T Park, and W. J. Nam, “Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature,” Scpirta Mater. 51, 355–359 (2004).

    Article  CAS  Google Scholar 

  11. Y.-H. Zhao, X.-Zh. Liao, Sh. Cheng, and E. Ma, “Simultaneously Increasing the Ductility and Strength of Nanostractured Alloys,” Advanced Materials. 18, 2280–2283 (2006).

    Article  CAS  Google Scholar 

  12. T. Shanmugasundaram, B. S. Murty, and V. Subramanya Sarma, “Development of Ultrafine Grained High Strength Al-Cu Alloy by Cryorolling,” Scripta Mater. 54, 2013–2017 (2006).

    Article  CAS  Google Scholar 

  13. Z. N. Archakova, G. A. Balkhontsev, I. G. Basova, et al., Structure and Properties of Semiproducts Made of Aluminum Alloys (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  14. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Materials: Production, Structure, and Properties (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  15. H. R. Song, Y. S. Kim, and W. J. Nam, “Mechanical Properties of Ultrafine Grained 5052 Al Alloy Produced by Accumulative Roll-Bonding and Cryogenic Rolling,” Metals and Materials International. 12(1), 7–12 (2006).

    Article  Google Scholar 

  16. V. M. Segal, V. I. Reznikov, V. I. Kopylov, et al., Processes of Plastic Structure Formation in Metals (Navuka i Tekhnika, MInsk, 1994) [in Russian].

    Google Scholar 

  17. M. Murayama, Z. Horita, and K. Hono, “Microstructure of Two-phase Al-1.7 at % Cu Alloy Deformed by Equal-channel Angular Pressing,” Acta mater. 49, 21–29 (2001).

    Article  CAS  Google Scholar 

  18. Y. Huang and P. B. Prangnell, “The Effect of Cryogenic Temperature and Change in Deformation Mode on the Limiting Grain Size in a Severely Deformed Dilute Aluminium Alloy,” Acta Mater. 56, 1619–1632 (2008).

    Article  CAS  Google Scholar 

  19. G. Sha, Y. B. Wang, X. Z. Liao, et al., “Influence of Equal-channel Angular Pressing on Precipitation in an Al-Zn-Mg-Cu Alloy,” Acta Mater. 57, 3123–3132 (2009).

    Article  CAS  Google Scholar 

  20. J. K. Kim, H. G. Jeong, S. I. Hong, et al., “Effect of Aging Treatment on Heavily Deformed Microstracture of a 6061 Aluminum Alloy after Equal-channel Angular Pressing,” Scripta Mater. 45, 901–907 (2001).

    Article  CAS  Google Scholar 

  21. W. J. Kim, C. S. Chung, D. S. Ma, et al., “Optimization of Strength and Ductility of 2024 Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging,” Scripta Mater. 49, 333–338 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Markushev.

Additional information

Original Russian Text © M.V. Markushev, E.V. Avtokratova, I.Ya. Kazakulov, S.V. Krymsky, M.Yu. Mochalova, M.Yu. Murashkin, O.Sh. Sitdikov, 2010, published in Deformatsiya i Razrushenie Materialov, 2010, No. 4, pp. 36–41.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markushev, M.V., Avtokratova, E.V., Kazakulov, I.Y. et al. Microstructure and properties of an aluminum D16 alloy subjected to cryogenic rolling. Russ. Metall. 2011, 364–369 (2011). https://doi.org/10.1134/S0036029511040136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029511040136

Keywords

Navigation