Skip to main content
Log in

Basic Principles of Alloying and Treatment of High-Nitrogen Austenitic Corrosion-Resistant Steels

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Based on analysis and generalization of numerous experimental and theoretical investigations, we formulate basic principles for making austenitic high-nitrogen steels with a unique combination of mechanical properties and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Samarin, “Substitution of nitrogen for nickel in a high-temperature steel,” Izv. Akad. Nauk SSSR, Ser. OTN, No. 1–2 (1944).

  2. V. I. Prosvirnin and N. P. Agapova, “Influence of nitrogen on the properties of high-chromium steel,” in Nitrogen in Steel. Transactions of TsNIITMASh (Mashgiz, Moscow, 1950), Vol. 29.

    Google Scholar 

  3. M. V. Pridantsev, N. P. Talov, and F. L. Levin, High-Strength Austenitic Steels (Metallurgiya, Moscow, 1969).

    Google Scholar 

  4. M. V. Pridantsev and A. A. Babakiv, Corrosion-Resistant Steels and Alloys (Metallurgiya, Moscow, 1971).

  5. A. T. Balevski, I. D. Nikolov, D. I. Neonov, and E. N. Momchilov, “Method of filling a mold,” USSR Inventor’s Certificate no. 531 643, Byull. Izobret., no. 38 (1976).

  6. I. D. Nikolov, Ts. V. Rashev, I. G. Chorbov, I. M. Peichev, Kh. G. Penchev, M. I. Marinov, and A. K. Bradvarov, “Installation for nitriding metallic materials and ferroalloys under pressure,” USSR Inventor’s Certificate no. 901 353, Byull. Izobret., no. 54 (1981).

  7. T. Rashev, High Nitrogen Steels. Metallurgy under Pressure (Publishing House of the Bulgarian Academy of Sciences, Sofia, 1995).

    Google Scholar 

  8. T. Rashev, “Development of laboratory and industrial installations for one stage production of HNS,” Mater. Manuf. Processes 19 (1), 31–40 (2004).

  9. S. Budurov, V. M. Blinov, D. Rashev, and V. Bozhinov, “Cellular decomposition in austenitic Kh18G10F and 18G20F steels,” Izv. Khim. Inst. Bolg. AN 13 (4), 466–476 (1980).

  10. V. M. Blinov, O. A. Bannykh, I. L. Poimenov, Ts. V. Rashev, Ch. A. Andreev, and L. A. Sar’’ivanov, “Wear resistance of high-nitrogen nonmagnetic chromium–manganese steels,” Izv. Akad. Nauk SSSR, Ser. Met., No. 6, 142–145 (1982).

  11. O. A. Bannykh and V. M. Blinov, “On the structure and properties of high nitrogen low-carbon non austenitic steels,” Steel Res. 65 (5), 178–183 (1994).

  12. M. O. Speidel and P. J. Uggowitzer, “High manganese, high nitrogen austenitic stainless steels: their strength and toughness,” in Proceedings of Conference on High Manganese High Nitrogen Austenitic Steels, Ed. by R. A. Lula (ASM International, Ohio, 1993), pp. 135–142.

  13. HNS 2003—High Nitrogen Steel, Ed. by M. O. Speidel, C. Kowanda, and M. Diener (Institute of Metallurgy, Zurich, 2003).

    Google Scholar 

  14. P. J. Uggowitzer, R. Magdowski, and M. O. Speidel, “Nickel free high nitrogen austenitic steels,” ISIJ Int. 36, 901–908 (1996).

  15. P. J. Uggowitzer, N. Paulus, and M. O. Speidel, “Ductile-to-brittle transition in nitrogen alloyed austenitic stainless steels,” in Proceedings of Conference on Application of Stainless Steels 92 (Institute of Metals ASM Int., Stockholm, 1992), Vol. 1, 62–72 (1992).

  16. M. A. E. Harzenmoser, R. P. Reed, P. J. Uggowitzer, and M. O. Speidel, “The influence of nickel and nitrogen on the mechanical properties of high-nitrogen austenitic steels at cryogenic temperatures,” in Proceedings of Conference on High Nitrogen Steels—HNS90, Ed. by. G. Stein and H. Witulski (Stahl & Eisen Dusseldorf, Germany, 1990), pp. 197–203.

  17. A. H. Satir-Kolorz and H. K. Feichtinger, “On the solubility of nitrogen in liquid iron and steel alloys using elevated pressure,” Z. Metallkde. 82 (9), 689–697 (1991).

  18. A. S. Oryshchenko, V. A. Malyshevskii, G. Yu. Kalinin, S. Yu. Mushnikova, O. A. Khar’kov, E. R. Gutman, O. A. Bannykh, V. M. Blinov, T. N. Zvereva, E. V. Blinov, and I. O. Bannykh, “High-strength corrosion-resistant high-nitrogen steel,” RF Patent 2425905, Byull. Izobret., no. 22 (2011).

  19. Yu. I. Ustinovschikov, A. V. Rats, O. A. Bannykh, and V. M. Blinov, “Properties of structures forming upon quenching of Fe–18Cr–(0.9–1.3)% N alloys with and without nickel,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 7, 48–51 (1997).

  20. Yu. I. Ustinovschikov, A. V. Rats, O. A. Bannykh, and V. M. Blinov, “Structure and properties of 05Kh18A7 alloy,” Izv. Ross. Akad. Nauk, Ser. Met., No. 2, 51–56 (1994).

  21. B. E. Paton, V. I. Lakomskii, G. F. Torkhov, and V. A. Slyshankova, “Production of high-nitrogen steels and their properties,” Probl. Spets. Elektromet., No. 1, 68–88 (1975).

  22. V. I. Lakomskii, Plasma–Arc Remelting (Tekhnika, Kiev, 1974).

    Google Scholar 

  23. G. M. Grigorenko and Yu. M. Pomarin, Hydrogen and Nitrogen in Metals during Plasma Melting (Naukova Dumka, Kiev, 1989).

    Google Scholar 

  24. V. G. Gavriljuk and H. Berns, High Nitrogen Steels (Springer, Germany, 1999).

    Book  Google Scholar 

  25. O. A. Bannykh, P. B. Budberg, and S. P. Alisova, Binary and Multicomponent Iron-Based Alloy Phase Diagrams: A Handbook (Metallurgiya, Moscow, 1986).

    Google Scholar 

  26. I. O. Bannykh, I. O. Bocharova, and T. N. Zvereva, “Specific features of structure formation in high-nitrogen austenitic steels in quenching,” Russ. Metall. (Metally), No. 9, 826–830 (2011).

  27. V. M. Blinov, N. M. Voznesenskaya, I. O. Bannykh, O. A. Tonysheva, E. V. Blinov, and T. N. Zvereva, “Effect of rolling temperature on the structure and mechanical properties of high-nitrogen austenitic 05Kh21G9N7AMF and 04Kh22G12N4AMF steels,” Deform. Razrush. Mater., No. 2, 26–30 (2015).

  28. O. A. Bannykh, V. M. Blinov, M. V. Kostina, E. V. Blinov, and G. Yu. Kalinin, “Effect of hot-rolling and heat-treatment conditions on the structure and mechanical and technological properties of nitrogen-bearing austenitic steel 05Kh22AG15N8M2F-Sh,” Russ. Metall. (Metally), No. 4, 306–313 (2006).

  29. I. V. Gorynin, V. A. Malyshevskii, G. Yu. Kalinin, S. Yu. Mushnikova, O. A. Bannykh, V. M. Blinov, and M. V. Kostina, “Corrosion-resistant high-strength nitrogen-bearing steels,” Vopr. Materialoved. 59 (3), 7–16 (2009).

  30. B. Hwang, T.-H. Lee, and S.-J. Kim, “Effect of alloying elements on ductile-to-brittle transition behavior of high-interstitial-alloyed 18Cr–10Mn austenitic steels,” Proc. Eng. 10, 409–414 (2011).

  31. H. Li, Z. Jiang, H. Feng, Q. Ma, and D. Zhan, “Aging precipitation behavior of 18Cr–16Mn–2Mo–1.1N high nitrogen austenitic stainless steel and its influences on mechanical properties,” J. Iron Steel Res. 19 (8), 43–51 (2012).

  32. B. Hwang, T.-H. Lee, S.-J. Park, C.-S. Oh, and S.‑J. Kim, “Correlation of austenite stability and ductile-to-brittle transition behavior of high-nitrogen 18Cr–10Mn austenitic steels,” Mater. Sci. Eng. A 528, (24), 7257–7266 (2011).

  33. I. O. Bannykh, “Correlation between the granular structure and the mechanical properties of high-nitrogen austenitic 02Kh20AG10N4MFB steel after annealing,” Russ. Metall. (Metally), No. 10, 972–976 (2016).

  34. I. O. Bannykh, “Effect of quenching conditions on the formation of the grain structure and the mechanical properties of high-nitrogen austenitic 02Kh20AG14N8MF and 02Kh20AG12N4 steels,” Russ. Metall. (Metally), No. 11, 876–879 (2015).

  35. V. Gavriljuk, Yu. Petrov, and B. Shanina, “Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels,” Scr. Mater. 55 (6), 537–540 (2006).

  36. S. Lu, Q.-M. Hu, B. Johansson, and L. Vitos, “Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels,” Acta Mater. 59 (14), 5728–5734 (2011).

  37. L. Mosecker, D. T. Pierce, A. Schwedt, M. Beighmohamadi, J. Mayer, W. Bleck, and J. E. Wittig, “Temperature effect on deformation mechanisms and mechanical properties of a high manganese C + N alloyed austenitic stainless steel,” Mater. Sci. Eng. A 642, 71–83 (2015).

  38. T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim, “Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels,” Acta Mater. 58 (8), 3173–3186 (2010).

  39. M. Moallemi, A. Kermanpur, A. Najafizadeh, A. Rezaee, H. Samaei Baghbadorani, and P. Dastranjy Nezhadfar, “Deformation-induced martensitic transformation in a 201 austenitic steel: the synergy of stacking fault energy and chemical driving force,” Mater. Sci. Eng. A 653, 147–152 (2016).

  40. B. Bhav Singh, K. Sivakumar, and T. Balakrishna Bhat, “Effect of cold rolling on mechanical properties and ballistic performance of nitrogen-alloyed austenitic steels,” Int. J. Impact Eng. 36, 611–620 (2009).

  41. G. Balachandran, M. L. Bhatia, N. B. Ballal, and P. Krishna Rao, “Some theoretical aspects on designing nickel free high nitrogen austenitic stainless steels,” SIJ Int. 41 (9), 1018–1027 (2001).

  42. I. O. Bannykh, “Effect of alloying on the strength properties and the hardening mechanisms of nitrogen-bearing austenitic steels after hot deformation and annealing,” Metally, No. 6, 74–80 (2017).

    Google Scholar 

  43. P. Behjati, A. Kermanpur, A. Najafizadeh, H. Samaei Baghbadorani, L. P. Karjalainen, J.-G. Jung, and Y.‑K. Lee, “Design of a new Ni-free austenitic stainless steel with unique ultrahigh strength-high ductility synergy,” Mater. Design. 63, 500–507 (2014).

  44. Y.-P. Lang, P. Qu, H.-T. Chen, and Y.-Q. Weng, “Research progress and development tendency of nitrogen-alloyed austenitic stainless steels,” J. Iron Steel Res. Int. 22 (2), 91–98 (2015).

  45. I. O. Bannykh and E. N. Blinova, “Influence of the stacking fault energy on the structure and mechanical properties of high-nitrogen austenitic steels,” in Proceedings of VII International Conference on Deformation and Fracture of Materials and Nanomaterials (IMET RAN, Moscow, 2017), pp. 238–239.

  46. K.-S. Kim, J.-H. Kang, and S.-J. Kim, “Effects of carbon and nitrogen on precipitation and tensile behavior in 15Cr– 15Mn–4Ni austenitic stainless steels,” Mater. Sci. Eng. A 712, 114–121 (2018).

Download references

ACKNOWLEDGMENTS

This work was performed in terms of state assignment 007-00129-18-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Bannykh.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannykh, I.O., Glezer, A.M. Basic Principles of Alloying and Treatment of High-Nitrogen Austenitic Corrosion-Resistant Steels. Russ. Metall. 2019, 336–340 (2019). https://doi.org/10.1134/S0036029519040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519040037

Keywords:

Navigation