Skip to main content
Log in

Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe a unified structure of solutions for all equations of the Ablowitz–Kaup–Newell–Segur hierarchy and their combinations. We give examples of solutions that satisfy different equations for different parameter values. In particular, we consider a rank-2 quasirational solution that can be used to investigate many integrable models in nonlinear optics. An advantage of our approach is the possibility to investigate changes in the behavior of a solution resulting from changing the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Its and V. P. Kotljarov, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 11, 965–968 (1976).

    MathSciNet  Google Scholar 

  2. A. R. Its, Vestn. Leningr. Univ. Mat. Mekh. Astron., 7, 39–46 (1976).

    MathSciNet  Google Scholar 

  3. E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometrical Approach to Nonlinear Evolution Equations, Springer, Berlin (1994).

    MATH  Google Scholar 

  4. A. O. Smirnov, Russian Acad. Sci. Sb. Math., 82, 461–470 (1995).

    MathSciNet  Google Scholar 

  5. A. O. Smirnov, Theor. Math. Phys., 107, 568–578 (1996).

    Article  Google Scholar 

  6. A. O. Smirnov, Sb. Math., 188, 115–135 (1997).

    Article  MathSciNet  Google Scholar 

  7. A. O. Smirnov, J. Math. Sci. (New York), 192, 117–125 (2013).

    Article  MathSciNet  Google Scholar 

  8. A. O. Smirnov, Theor. Math. Phys., 173, 1403–1416 (2012).

    Article  Google Scholar 

  9. A. O. Smirnov, Math. Notes, 94, 897–907 (2013).

    Article  MathSciNet  Google Scholar 

  10. A. O. Smirnov and G. M. Golovachev, Nelin. Dinam., 9, 389–407 (2013).

    Article  Google Scholar 

  11. A. O. Smirnov, E. G. Semenova, V. Zinger, and N. Zinger, “On a periodic solution of the focusing nonlinear Schrödinger equation,” arXiv:1407.7974v1 [math-ph] (2014).

    Google Scholar 

  12. A. O. Smirnov, S. G. Matveenko, S. K. Semenov, and E. G. Semenova, SIGMA, 11, 032 (2015); arXiv: 1412.1562v2 [math-ph] (2014).

    MathSciNet  Google Scholar 

  13. A. R. Its and V. B. Matveev, J. Soviet Math., 23, 2412–2420 (1983).

    Article  Google Scholar 

  14. A. R. Its, A. V. Rybin, and M. A. Sall’, Theor. Math. Phys., 74, 20–32 (1988).

    Article  MathSciNet  Google Scholar 

  15. G. L. Alfimov, A. R. Its, and N. E. Kulagin, Theor. Math. Phys., 84, 787–793 (1990).

    Article  MathSciNet  Google Scholar 

  16. M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A, 133, 483–488 (1988).

    Article  ADS  Google Scholar 

  17. K. Porsezian, M. Daniel, and M. Lakshmanan, J. Math. Phys., 33, 1807–1816 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Daniel, K. Porsezian, and M. Lakshmanan, Phys. Lett. A, 174, 237–240 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Hirota, J. Math. Phys., 14, 805–809 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Q. Dai and J. F. Zhang, J. Phys. A, 39, 723–737 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, Phys. Rev. E, 81, 046602 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Li, Z. Wu, L. Wang, and J. He, Ann. Phys., 334, 198–211 (2013); arXiv:1304.7164v1 [nlin.SI] (2013).

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Z. Li, J. S. He, and K. Porsezian, Phys. Rev. E, 87, 012913 (2013).

    Article  ADS  Google Scholar 

  24. L. H. Wang, K. Porsezian, and J. S. He, Phys. Rev. E, 87, 053202 (2013); arXiv:1304.8085v3 [nlin.SI] (2013).

    Article  ADS  Google Scholar 

  25. A. Ankiewicz and N. Akhmediev, Phys. Lett. A, 378, 358–361 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Chowdury, D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, Phys. Rev. E, 91, 022919 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Kundu, A. Mukherjee, and T. Naskar, Proc. R. Soc. London A, 470, 20130576 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  28. G. P. Leclert, C. F. F. Karney, A. Bers, and D. J. Kaup, Phys. Fluids, 22, 1545–1553 (1979).

    Article  ADS  Google Scholar 

  29. X. Jukui and L. He, Phys. Plasmas, 10, 339–342 (2003).

    Article  ADS  Google Scholar 

  30. R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Plasmas, 15, 122310 (2008).

    Article  ADS  Google Scholar 

  31. R. Sabry, W. M. Moslem, P. K. Shukla, and H. Saleem, Phys. Rev. E, 79, 056402 (2009).

    Article  ADS  Google Scholar 

  32. R. Sabry, W. M. Moslem, and P. K. Shukla, Eur. Phys. J. D, 51, 233–240 (2009).

    Article  ADS  Google Scholar 

  33. R. Fedele, S. De Nicola, D. Jovanović, D. Grecu, and A. Visinescu, J. Plasma Phys., 76, 645–653 (2010).

    Article  ADS  Google Scholar 

  34. A. T. Grecu, S. De Nicola, R. Fedele, D. Grecu, and A. Visinescu, AIP Conf. Proc., 1203, 1239–1244 (2010).

    Article  ADS  Google Scholar 

  35. R. Fedele, A. Mannan, F. Tanjia, S. De Nicola, D. Jovanović, and L. Gianfrani, J. Plasma Phys., 79, 443–446 (2013).

    Article  ADS  Google Scholar 

  36. P. Dubard, P. Gaillard, C. Klein, and V. B. Matveev, Eur. Phys. J. Spec. Top., 185, 247–261 (2010).

    Article  Google Scholar 

  37. P. Dubard, “Multi-rogue solutions to the focusing NLS equation,” Doctoral dissertation, https://telarchivesouvertes. fr/tel-00625446/document, Université de Bourgogne, Dijon, France (2010).

    Google Scholar 

  38. P. Dubard and V. B. Matveev, Nat. Hazards Earth Syst. Sci., 11, 667–672 (2011).

    Article  ADS  Google Scholar 

  39. P. Dubard and V. B. Matveev, Nonlinearity, 26, R93–R125 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  40. V. B. Matveev, P. Dubard, and A. O. Smirnov, Nelin. Dinam., 11, 219–240 (2015).

    Article  Google Scholar 

  41. B. Konopelchenko, J. Sidorenko, and W. Strampp, Phys. Lett. A, 157, 17–21 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  42. Y. Cheng and Y.-S. Li, Phys. Lett. A, 157, 22–26 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  43. R. S. Johnson, J. Fluid Mech., 97, 701–719 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  44. V. D. Lipovskii, V. B. Matveev, and A. O. Smirnov, Zap. Nauchn. Sem. LOMI, 150, 70–75 (1986).

    Google Scholar 

  45. C. Klein, V. B. Matveev, and A. O. Smirnov, Theor. Math. Phys., 152, 1132–1145 (2007).

    Article  MathSciNet  Google Scholar 

  46. K. R. Khusnutdinova, C. Klein, V. B. Matveev, and A. O. Smirnov, Chaos, 23, 013126 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  47. V. M. Eleonskii, I. M. Krichever, and N. E. Kulagin, Sov. Phys. Dokl., 31, 226–228.

  48. D. H. Peregrine, J. Austral. Math. Soc. Ser. B, 25, 16–43 (1983).

    Article  MathSciNet  Google Scholar 

  49. A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform (Intl. Geophys.Series, Vol. 97), Acad. Press, Boston, Mass. (2010).

    MATH  Google Scholar 

  50. E. A. Kuznetsov, Sov. Phys. Dokl., 22, 507–508 (1977).

    ADS  Google Scholar 

  51. Y.-C. Ma, Stud. Appl. Math., 60, 43–58 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  52. N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys., 69, 1089–1093 (1986).

    Article  MathSciNet  Google Scholar 

  53. M. Tajiri and Y. Watanabe, Phys. Rev. E, 57, 3510–3519 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  54. N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970); English transl. (Transl. Math. Monogr., Vol. 79), Amer. Math. Soc., Providence, R. I. (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Matveev.

Additional information

This research is supported by the Russian Foundation for Basic Research (Grant No. 14-01-00589 a).

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 186, No. 2, pp. 191–220, February, 2016. Original article submitted April 28, 2015; revised August 31, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveev, V.B., Smirnov, A.O. Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach. Theor Math Phys 186, 156–182 (2016). https://doi.org/10.1134/S0040577916020033

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916020033

Keywords

Navigation