Skip to main content
Log in

CABARET scheme in velocity-pressure formulation for two-dimensional incompressible fluids

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The CABARET method was generalized to two-dimensional incompressible fluids in terms of velocity and pressure. The resulting algorithm was verified by computing the transport and interaction of various vortex structures: a stationary and a moving solitary vortex, Taylor-Green vortices, and vortices formed by the instability of double shear layers. Much attention was also given to the modeling of homogeneous isotropic turbulence and to the analysis of its spectral properties. It was shown that, regardless of the mesh size, the slope of the energy spectra up to the highest-frequency harmonics is equal −3, which agrees with Batchelor’s enstrophy cascade theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Goloviznin and A. A. Samarskii, “Finite approximation of convective transport with a space splitting time derivative,” Math. Model. 10(1), 86–100 (1998).

    MathSciNet  MATH  Google Scholar 

  2. V. M. Goloviznin and A. A. Samarskii, “Some properties of the difference scheme CABARET,” Math. Model. 10(1), 101–116 (1998).

    MathSciNet  MATH  Google Scholar 

  3. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 1976; Mir, Moscow, 1980).

    Google Scholar 

  4. V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-characteristic schemes with separated conservative and flux variables,” Math. Model. 15(9), 29–48 (2003).

    MathSciNet  MATH  Google Scholar 

  5. V. M. Goloviznin and S. A. Karabasov, “Nonlinear correction of the Cabaret scheme,” Mat. Model. 10(12), 107–123 (1998).

    MathSciNet  Google Scholar 

  6. V. M. Goloviznin, “Balance-characteristic method for the numerical solution of one-dimensional equations of gas dynamics in Euler variables,” Math. Model 18(11), 14–30 (2006).

    MathSciNet  MATH  Google Scholar 

  7. V. Yu. Glotov and V. M. Goloviznin, “The Cabaret Scheme for two-dimensional incompressible fluids in stream function-vorticity formulation,” Mat. Model. 23(9), 89–104 (2011).

    MATH  Google Scholar 

  8. A. V. Danilin and V. M. Goloviznin, “Cabaret scheme in velocity-vorticity formulation for numerical modeling of ideal fluid motion in two-dimensional domain,” Mat. Model. 24(5), 45–60 (2012).

    MathSciNet  Google Scholar 

  9. S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Theory of Concentrated Vortices: An Introduction (Inst. Teplofiziki Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2003; Springer, Berlin, 2007).

    Google Scholar 

  10. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001).

    MATH  Google Scholar 

  11. Y. C. Zhou and G. W. Wei, “High resolution conjugate filters for the simulation of flows,” J. Comput. Phys. 189, 159–179 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Walsh, “Eddy solutions of the Navier-Stokes equations,” in The NSE II-Theory and Numerical Methods (Springer-Verlag, Berlin, 1992), pp. 306–309.

    Google Scholar 

  13. J. Sommeria, “Experimental study of the two-dimensional inverse energy cascade in a square box,” J. Fluid Mech. 170, 139–168 (1986).

    Article  Google Scholar 

  14. P. Tabeling, A. E. Hansen, and J. Paret, “Forced and decaying 2d turbulence: Experimental study,” Lecture Notes Phys. 511, 145–169 (1998).

    Article  MathSciNet  Google Scholar 

  15. Das Chandra, Kida Shigeo, and Goto Susumu, “Overall self-similar decay of two-dimensional turbulence,” J. Phys. Soc. Jpn. 70, 966–976 (2001).

    Article  MATH  Google Scholar 

  16. P. G. Frik, Turbulence: Approaches and Models (Inst. Komp’yut. Issled., Izhevsk, 2003) [in Russian].

    Google Scholar 

  17. M. D. Love, “Subgrid modeling studies with Burgers’ equation,” J. Fluid Mech. 100, part 1, 87–110 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Tabeling, “Two-dimensional turbulence: A physicist approach,” Phys. Rep. 362, 1–62 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Paret and P. Tabeling, “Experimental observation of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 79, 4162–4165 (1997).

    Article  Google Scholar 

  20. P. G. Saffman, “On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number,” Stud. Appl. Math. 50, 377–383 (1971).

    MATH  Google Scholar 

  21. B. Fornberg, “A numerical study of 2d-turbulence,” Reprinted from J. Comput. Phys. Comput. Phys. 25(1), 1–31 (1977).

    Article  MATH  Google Scholar 

  22. N. K.-R. Kevlahan, and M. Farge, “Vorticity filaments in two-dimensional turbulence: Creation, stability, and effect,” J. Fluid Mech. 346, 49–76 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. K. N. Volkov and V. N. Emel’yanov, Large Eddy Simulation in Computations of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  24. S. A. Karabasov and V. M. Goloviznin, “New efficient high-resolution method for nonlinear problems in aeroacoustic,” AIAA J. 45, 2861–2871 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Glotov.

Additional information

Original Russian Text © V.Yu. Glotov, V.M. Goloviznin, 2013, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2013, Vol. 53, No. 6, pp. 898–913.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glotov, V.Y., Goloviznin, V.M. CABARET scheme in velocity-pressure formulation for two-dimensional incompressible fluids. Comput. Math. and Math. Phys. 53, 721–735 (2013). https://doi.org/10.1134/S0965542513060080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542513060080

Keywords

Navigation