Skip to main content
Log in

Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A parallel computation technology for modeling fluid dynamics problems by finite-volume and finite-difference methods of high accuracy is presented. The development of an algorithm, the design of a software implementation, and the creation of parallel programs for computations on large-scale computing systems are considered. The presented parallel technology is based on a multilevel parallel model combining various types of parallelism: with shared and distributed memory and with multiple and single instruction streams to multiple data flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ramirez, “The Mont-Blanc architecture,” International Supercomputing Conference, Hamburg, Germany, June 17–21, 2012 (Hamburg, 2012).

    Google Scholar 

  2. V. V. Voevodin and Vl. V. Voevodin, Parallel Computations (BKhV-Peterburg, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  3. A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel Computing, 2nd ed. (Addison-Wesley, Reading, MA, 2003).

    Google Scholar 

  4. Yu. B. Vasilevskii, I. N. Kon’shin, G. V. Kopytov, and K. M. Terekhov, INMOST: Program Platform and Graphic Environment for Development of Parallel Numerical Models on General Grids (Mosk. Gos. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  5. R. Aubry, G. Houzeaux, M. Vazquez, and J. M. Cela, “Some useful strategies for unstructured edge-based solvers on shared memory machines,” Int. J. Numerical Meth. Eng. 85, 537–561 (2010).

    Article  Google Scholar 

  6. P. B. Bogdanov, A. A. Efremov, A. V. Gorobets, and S. A. Sukov, “Application of a scheduler for efficient data exchange on hybrid supercomputers with massively parallel accelerators,” Vychisl. Metody Program. 14, 122–134 (2013).

    Google Scholar 

  7. MPI: A Message-Passing Interface Standard, Version 3.0, Message Passing Interface, Forum, September 21, 2012 (http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf).

  8. OpenMP Application Program Interface, Version 4.0, July 2013 (http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf).

  9. P. Bogdanov and A. A. Efremov, “Programming infrastructure of heterogeneous computing based on OpenCL and its applications,” GPU Technology Conference GTC-2013, San Jose, USA, March 18–21, 2013 (San Jose, CA, 2013).

    Google Scholar 

  10. P. B. Bogdanov, A. V. Gorobets, and S. A. Sukov, “Adaptation and optimization of basic operations for an unstructured mesh CFD algorithm for computation on massively parallel accelerators,” Comput. Math. Math. Phys. 53(8), 1383–1394 (2013).

    Article  MathSciNet  Google Scholar 

  11. T. Barth, “Numerical methods for conservation laws on structured and unstructured meshes,” VKI for Fluid Dynamics, VKI Lectures series (2003), Vol. 5.

    Google Scholar 

  12. I. V. Abalakin and T. K. Kozubskaya, “A scheme based on edge-oriented quasi-1D reconstruction of variables for solving aerodynamics and aeroacoustics problems on unstructured meshes,” Mat. Model. 25(8), 109–136 (2013).

    MathSciNet  Google Scholar 

  13. P. A. Bakhvalov, “Quasi-one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems,” Mat. Model. 25, 95–108 (2013).

    Google Scholar 

  14. A. Gorobets, F. X. Trias, and A. Oliva, “A parallel MPI + OpenMP + OpenCL algorithm for hybrid supercomputations of incompressible flows,” Comput. Fluids 88, 764–772 (2013).

    Article  MathSciNet  Google Scholar 

  15. M. Soria, C. D. Perez-Segarra, and A. Oliva, “A direct parallel algorithm for the efficient solution of the pressure-correction equation of incompressible flow problems using loosely coupled computers,” Numer. Heat Transfer Part B 41, 117–138 (2002).

    Article  Google Scholar 

  16. K. Schloegel, G. Karypis, and V. Kumar, “Parallel static and dynamic multi-constraint graph partitioning,” Concurrency Comput. Practice Experience 14(3), 219–240 (2002).

    Article  MATH  Google Scholar 

  17. F. Pellegrini, PT-Scotch and libPTScotch 6.0 User’s Guide, 2012 (https://gforge.iniia.fr/docman/view.php/248/8261/ptscotch-user6.0.pdf).

    Google Scholar 

  18. E. N. Golovchenko, “Parallel software package for large mesh decomposition,” Mat. Model. 23(10), 3–18 (2011).

    MathSciNet  Google Scholar 

  19. B. Krasnopolsky, “The reordered BiCGStab method for distributed memory computer systems,” ICCS 2010 Procedia Comput. Sci. 1(1), 213–218 (2010).

    Google Scholar 

  20. A. V. Gorobets, S. A. Sukov, and P. B. Bogdanov, “Toward heterogeneous supercomputing in CFD,” Inf. Tekhnol. Vychisl. Sist., No. 4, 23–34 (2013).

    Google Scholar 

  21. E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” Proceedings of the 24th National ACM Conference (1969), pp. 157–172.

    Google Scholar 

  22. A. V. Gorobets, S. A. Sukov, A. O. Zheleznyakov, P. B. Bogdanov, B. N. Chetverushkin, “Application of GPU in hybrid two-level MPI + OpenMP parallelization on heterogeneous computing systems,” Vest. Yuzhno-Ural. Gos. Univ., No. 25 (242), 76–86 (2011).

    Google Scholar 

  23. A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning sparse matrix-vector multiplication for GPU architectures,” High Performance Embedded Architectures and Compilers, Lect. Notes Comput. Sci. 5952, 111–125 (2010).

    Article  Google Scholar 

  24. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations,” Vychisl. Metody Program. 13, 110–125 (2012).

    Google Scholar 

  25. G. Oyarzun, R. Borrell, A. Gorobets, and A. Oliva, “MPI-CUDA sparse matrix-vector multiplication for the conjugate gradient method with an approximate inverse preconditioner,” Comput. Fluids 92, 244–252 (2014).

    Article  MathSciNet  Google Scholar 

  26. F. X. Trias, O. Lehmkuhl, A. Oliva, C. D. Pérez-Segarra, R. W. C. P. Verstappen, “Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids,” J. Comput. Phys. 258(1), 246–267 (2014).

    Article  MathSciNet  Google Scholar 

  27. R. W. C. P. Verstappen and A. E. P. Veldman, “Symmetry-preserving discretization of turbulent flow,” J. Comput. Phys. 187, 343–368 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  28. V. Titarev, M. Dumbser, and S. Utyuzhnikov, “Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions,” J. Comput. Phys. 256, 17–33 (2014).

    Article  MathSciNet  Google Scholar 

  29. A Guide to Vectorization with Intel C++ Compilers, 2012 (http://download-software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorobets.

Additional information

Original Russian Text © A.V. Gorobets, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 4, pp. 641–652.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorobets, A.V. Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms. Comput. Math. and Math. Phys. 55, 638–649 (2015). https://doi.org/10.1134/S0965542515040065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515040065

Keywords

Navigation