Skip to main content
Log in

Accuracy of Bicompact Schemes in the Problem of Taylor–Green Vortex Decay

  • GENERAL NUMERICAL METHODS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For the unsteady incompressible Navier–Stokes equations, a high-order accurate bicompact scheme having the fourth order of approximation in space and the second order of approximation in time has been constructed for the first time. The scheme is obtained by applying the Marchuk–Strang splitting method with respect to physical processes. The convective part of the equations is discretized by additionally using locally one-dimensional splitting. The grid convergence of the proposed scheme with an order higher than the theoretical one is demonstrated on the exact solution of the two-dimensional Taylor–Green vortex problem. The developed bicompact scheme is used to compute the decay of the three-dimensional Taylor–Green vortex (in both laminar and turbulent regimes). It is shown that the scheme well resolves vortex structures and reproduces the turbulent spectrum of kinetic energy with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Drikakis, C. Fureby, F. Grinstein, and D. Youngs, “Simulation of transition and turbulence decay in the Taylor–Green vortex,” J. Turbul. 8 (20), 1–12 (2007).

    Article  Google Scholar 

  2. S. Kawai and S. K. Lele, “Large-eddy simulation of jet mixing in supersonic crossflows,” AIAA J. 48 (9), 2063–2083 (2010).

    Article  Google Scholar 

  3. J. R. Bull and A. Jameson, “Simulation of the Taylor–Green vortex using high-order flux reconstruction schemes,” AIAA J. 53 (9), 2750–2761 (2015).

    Article  Google Scholar 

  4. M. El Rafei, L. Könözsy, and Z. Rana, “Investigation of numerical dissipation in classical and implicit large eddy simulations,” Aerospace 4 (59), 1–20 (2017).

    Article  Google Scholar 

  5. M. de la Llave Plata, V. Couaillier, and M.-C. Pape, “On the use of a high-order discontinuous Galerkin method for DNS and LES of wall-bounded turbulence,” Comput. Fluids 176, 320–337 (2018).

    Article  MathSciNet  Google Scholar 

  6. A. I. Tolstykh, Compact Finite Difference Schemes and Application in Aerodynamic Problems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  7. A. I. Tolstykh, High Accuracy Compact and Multioperator Approximations for Partial Differential Equations (Nauka, Moscow, 2015) [in Russian].

    Google Scholar 

  8. K. Grimich, P. Cinnella, and A. Lerat, “Spectral properties of high-order residual-based compact schemes for unsteady compressible flows,” J. Comput. Phys. 252, 142–162 (2013).

    Article  MathSciNet  Google Scholar 

  9. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  10. D. G. Asfandiyarov, V. M. Goloviznin, and S. A. Finogenov, “Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers,” Comput. Math. Math. Phys. 55 (9), 1515–1526 (2015).

    Article  MathSciNet  Google Scholar 

  11. B. V. Rogov and M. N. Mikhailovskaya, “On the convergence of compact difference schemes,” Math. Models Comput. Simul. 1 (1), 91–104 (2009).

    Article  MathSciNet  Google Scholar 

  12. M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52 (4), 578–600 (2012).

    Article  MathSciNet  Google Scholar 

  13. B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations,” Comput. Math. Math. Phys. 53 (2), 205–214 (2013).

    Article  MathSciNet  Google Scholar 

  14. A. V. Chikitkin, B. V. Rogov, and S. V. Utyuzhnikov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations,” Appl. Numer. Math. 93, 150–163 (2015).

    Article  MathSciNet  Google Scholar 

  15. M. D. Bragin and B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations,” Comput. Math. Math. Phys. 56 (6), 947–961 (2016).

    Article  MathSciNet  Google Scholar 

  16. M. D. Bragin and B. V. Rogov, “On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law,” Dokl. Math. 94 (1), 382–386 (2016).

    Article  MathSciNet  Google Scholar 

  17. M. D. Bragin and B. V. Rogov, “Iterative approximate factorization of difference operators of high-order accurate bicompact schemes for multidimensional nonhomogeneous quasilinear hyperbolic systems,” Comput. Math. Math. Phys. 58 (3), 295–306 (2018).

    Article  MathSciNet  Google Scholar 

  18. B. V. Rogov and M. D. Bragin, “On spectral-like resolution properties of fourth-order accurate symmetric bicompact schemes,” Dokl. Math. 96 (1), 140–144 (2017).

    Article  MathSciNet  Google Scholar 

  19. A. V. Chikitkin and B. V. Rogov, “Family of central bicompact schemes with spectral resolution property for hyperbolic equations,” Appl. Numer. Math 142, 151–170 (2019).

    Article  MathSciNet  Google Scholar 

  20. B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations,” Appl. Numer. Math. 139, 136–155 (2019).

    Article  MathSciNet  Google Scholar 

  21. M. D. Bragin and B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations,” Appl. Numer. Math. 151, 229–245 (2020).

    Article  MathSciNet  Google Scholar 

  22. M. D. Bragin and B. V. Rogov, “High-order bicompact schemes for numerical modelling of multispecies multi-reaction gas flows,” Mat. Model. 32 (6), 21–36 (2020).

    MathSciNet  MATH  Google Scholar 

  23. J. P. Boris, “On large eddy simulation using subgrid turbulence models,” Whither Turbulence? Turbulence at the Crossroads, Lecture Notes in Physics (1990), pp. 344–353.

    Google Scholar 

  24. M. E. Brachet, D. I. Meiron, S. A. Orszag, et al., “Small-scale structure of the Taylor–Green vortex,” J. Fluid Mech. 130, 411–452 (1983).

    Article  Google Scholar 

  25. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  26. G. Strang, “On the construction and comparison of difference schemes,” SIAM J. Numer. Anal. 5 (2), 506–517 (1968).

    Article  MathSciNet  Google Scholar 

  27. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

  28. N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables (Nauka, Novosibirsk, 1967; Springer-Verlag, Berlin, 1971).

  29. W. M. Van Rees, A. Leonard, D. I. Pullin, and P. Koumoutsakos, “A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers,” J. Comput. Phys. 230, 2794–2805 (2011).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. D. Bragin or B. V. Rogov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, M.D., Rogov, B.V. Accuracy of Bicompact Schemes in the Problem of Taylor–Green Vortex Decay. Comput. Math. and Math. Phys. 61, 1723–1742 (2021). https://doi.org/10.1134/S0965542521110051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521110051

Keywords:

Navigation