Skip to main content
Log in

Ethanol to Butanol Conversion over Bifunctional Zeotype Catalysts Containing Palladium and Zirconium

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A study of the kinetics of ethanol conversion in the presence of Zr-containing zeolites BEA doped with palladium particles has revealed the order of formation of the main reaction products. It has been shown that the primary processes are ethanol dehydrogenation to acetaldehyde on Pd sites and ethanol dehydration to diethyl ether on the acid sites of the catalyst. After that, acetaldehyde undergoes the aldol–croton condensation reaction to form crotonal, which is hydrogenated to butanol on the metal sites. Butanol, in turn, is dehydrated into butenes, which undergo hydrogenation to butane. The presence of hydrogen in the gas phase leads to the displacement of ethanol from the metal surface and prevents the formation of surface carbonates and acetates. It has been found that hydrogen significantly accelerates ethanol dehydration owing to a decrease in the activation energy, which can be attributed to hydrogen spillover to the zeolite. The addition of water inhibits all acid-catalyzed reactions owing to competitive adsorption on acid sites and thereby decreases the butanol yield and the ethanol conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Sun and Y. Wang, ACS Catal. 4, 1078 (2014).

    Article  CAS  Google Scholar 

  2. A. Mohsenzadeh, A. Zamani, and M. J. Taherzadeh, ChemBioEng Rev. 4, 75 (2017).

    Article  CAS  Google Scholar 

  3. M. Iwamoto, Catal. Today 242, 243 (2015).

    Article  CAS  Google Scholar 

  4. O. A. Ponomareva, P. A. Shaposhnik, P. A. Kots, et al., Pet. Chem. 58, 1023 (2018).

    Article  CAS  Google Scholar 

  5. J. T. Kozlowski and R. J. Davis, ACS Catal. 3, 1588 (2013).

    Article  CAS  Google Scholar 

  6. V. V. Markovnikov and P. V. Zubov, Zh. Russ. Fiz.-Khim. Ob-va 2 (1), 128 (1889).

    Google Scholar 

  7. M. Guerbet, C.R. Acad. Sci. 128, 511 (1899).

    CAS  Google Scholar 

  8. C. R. Ho, S. Shylesh, and A. T. Bell, ACS Catal. 6, 939 (2016).

    Article  CAS  Google Scholar 

  9. I. C. Marcu, N. Tanchoux, F. Fajula, and D. Tichit, Catal. Lett. 143, 23 (2013).

    Article  CAS  Google Scholar 

  10. A. V. Chistyakov, P. A. Zharova, M. V. Tsodikov, et al., Kinet. Catal. 57, 803 (2016).

    Article  CAS  Google Scholar 

  11. S. A. Nikolaev, A. V. Chistyakov, P. A. Zharova, et al., Pet. Chem. 56, 730 (2016).

    Article  CAS  Google Scholar 

  12. S. Hanspal, Z. D. Young, J. T. Prillaman, and R. J. Davis, J. Catal. 352, 182 (2017).

    Article  CAS  Google Scholar 

  13. J. S. Bates and R. Gounder, J. Catal. 365, 213 (2018).

    Article  CAS  Google Scholar 

  14. P. A. Kots, V. L. Sushkevich, O. A. Tyablikov, and I. I. Ivanova, Microporous Mesoporous Mater. 243, 186 (2017).

    Article  CAS  Google Scholar 

  15. P. A. Kots, A. V. Zabilska, E. V. Khramov, et al., Inorg. Chem. 57), 11 978 (2018).

  16. V. L. Sushkevich, P. A. Kots, Y. G. Kolyagin, et al., J. Phys. Chem. C 123, 5540 (2019).

    Article  CAS  Google Scholar 

  17. R. G. Greenler, J. Chem. Phys. 37, 2094 (1962).

    Article  CAS  Google Scholar 

  18. A. Yee, S. J. Morrison, and H. Idriss, J. Catal. 186, 279 (1999).

    Article  CAS  Google Scholar 

  19. H. J. Kim and C. Song, Energy Fuels 28, 6788 (2014).

    Article  CAS  Google Scholar 

  20. S. Roy, K. Bakhmutsky, E. Mahmoud, Ret al., ACS Catal. 3, 573.

  21. F. Roessner and U. Roland, J. Mol. Catal., A 112, 401 (1996).

  22. D. Varisli T. Dogu, and G. Dogu, Chem. Eng. Sci. 62, 5349 (2007).

  23. A. H. Yonli, I. Gener, and S. Mignard, Microporous Mesoporous Mater. 132, 37 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The electron microscopy studies were conducted using the equipment of the Center for collective use of Crystallography and Photonics Federal Research Center of the Russian Academy of Sciences under the state task to Crystallography and Photonics Federal Research Center.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-33-01011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Kots.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kots, P.A., Zabilska, A.V., Grigor’ev, Y.V. et al. Ethanol to Butanol Conversion over Bifunctional Zeotype Catalysts Containing Palladium and Zirconium. Pet. Chem. 59, 925–934 (2019). https://doi.org/10.1134/S0965544119080097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119080097

Keywords:

Navigation