Skip to main content
Log in

Biosynthesis of phytohormones in algae

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Like in the case of higher plants, algal growth and development are controlled by the hormonal regulatory system. Essentially all known phytohormones were identified in various algal taxa, and the range of their physiological activities was confirmed. At the same time, our knowledge of enzymes involved in the phytohormone synthesis in algae is rather limited. Data concerning genes encoding these enzymes are still more fragmentary. Current data about proteomes of some algae allow the revealing of amino acid sequences with homology to those of the higher plant enzymes and their conserved domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPS:

copalyl pyrophosphate synthase

CYP79B2/CYP79B3:

cytochrome P450 79B2/B3

GGPP:

geranyl geranyl pyrophosphate

NCED:

9-cis-epoxycarotenoid dioxygenase

NIT1:

nitrilase 1

PDS:

phytoene desaturase

PSY:

phytoene synthase

SDR:

short-chain dehydroge-nase/reductase

TDC:

tryptophan decarboxylase

ZEP:

zea-xanthin epoxidase

References

  1. Lin, L. and Tan, R.X., Cross-Kingdom Actions of Phytohormones: A Functional Scaffold Exploration, Chem. Rev., 2011, vol. 111, pp. 2734–2760.

    Article  PubMed  CAS  Google Scholar 

  2. Cooke, T.J., Poli, D.B., Sztein, A.E., and Cohen, J.D., Evolutionary Patterns in Auxin Action, Plant Mol. Biol., 2002, vol. 49, pp. 319–338.

    Article  PubMed  CAS  Google Scholar 

  3. Bradley, P.M., Plant Hormones Do Have a Role in Controlling Growth and Development of Algae, J. Phycol., 1991, vol. 27, pp. 317–321.

    Article  CAS  Google Scholar 

  4. Jameson, P.E., Plant Hormones in the Algae, Prog. Phycol. Res, 1993, vol. 9, p. 239.

    CAS  Google Scholar 

  5. Tarakhovskaya, E.R., Maslov, Yu.I., and Shishova, M.F., Phytohormones in Algae, Russ. J. Plant Physiol., 2007, vol. 54, pp. 163–170.

    Article  CAS  Google Scholar 

  6. Jacobs, W.P., A Search for Some Angiosperm Hormones and Their Metabolites in Caulerpa paspaloides (Chlorophyta), J. Phycol., 1993, vol. 29, pp. 595–600.

    Article  CAS  Google Scholar 

  7. Kobayashi, M., Hirai, N., Kurimura, Y., Ohigashi, H., and Tsuji, Y., Abscisic Acid Dependent Morphogenesis in the Unicellular Green Alga Haematococcus pluvialis, Plant Growth Regul., 1997, vol. 22, pp. 79–85.

    Article  CAS  Google Scholar 

  8. Basu, S., Sun, H., Brian, L., Quatrano, R.L., and Muday, G.K., Early Embryo Development in Fucus distichus Is Auxin Sensitive, Plant Physiol., 2002, vol. 130, pp. 292–302.

    Article  PubMed  CAS  Google Scholar 

  9. Stirk, W.A., Novak, O., Strnad, M., and Staden, J., Cytokinins in Macroalgae, Plant Growth Regul., 2003, vol. 41, pp. 13–24.

    Article  CAS  Google Scholar 

  10. Jin, Q., Scherpa, P., Heimannb, K., and Hasenstein, K.H., Auxin and Cytoskeletal Organization in Algae, Cell Biol. Int., 2008, vol. 32, p. 542–545.

    Article  PubMed  CAS  Google Scholar 

  11. Hartung, W., The Evolution of Abscisic Acid (ABA) and ABA Function in Lower Plants, Fungi and Lichen, Funct. Plant Biol., 2010, vol. 37, pp. 806–812.

    Article  CAS  Google Scholar 

  12. Lau, S., Shao, N., Bock, R., Jürgens, G., and de Smet, I., Auxin Signaling in Algal Lineages: Fact or Myth? Trends Plant Sci., 2009, vol. 14, pp. 182–188.

    Article  PubMed  CAS  Google Scholar 

  13. Gruen, H.E., Auxins and Fungi, Annu. Rev. Plant Physiol., 1959, vol. 10, pp. 405–440.

    Article  CAS  Google Scholar 

  14. Spaepen, S., Vanderleyden, J., and Remans, R., Indole-3-Acetic Acid in Microbial and Microorganism-Plant Signaling, FEMS Microbiol. Rev., 2007, vol. 31, pp. 425–448.

    Article  PubMed  CAS  Google Scholar 

  15. Polevoi, V.V., Tarakhovskaya, E.R., Maslov, Yu.I., and Polevoi, A.V., Role of Auxin in Induction of Polarity in Fucus vesiculosus Zygotes, Russ. J. Develop. Biol., 2003, vol. 34, pp. 360–364.

    Article  CAS  Google Scholar 

  16. Lijun, H., The Auxin Concentration in Sixteen Chinese Marine Algae, Chinese J. Oceanol. Limnol., 2006, vol. 24, pp. 329–332.

    Article  Google Scholar 

  17. Reed, R.C., Brady, S.R., and Muday, G.K., Inhibition of Auxin Movement from the Shoot into the Root Inhibits Lateral Root Development in Arabidopsis, Plant Physiol., 1998, vol. 118, pp. 1369–1378.

    Article  PubMed  CAS  Google Scholar 

  18. Yokoya, N.S. and Handro, W., Effects of Auxins and Cytokinins on Tissue Culture of Grateloupia dichotoma (Gigartinales, Rhodophyta), Hydrobiology, 1996, vol. 326/327, pp. 393–400.

    Article  CAS  Google Scholar 

  19. Benjamins, R. and Scheres, B., Auxin: The Looping Star in Plant Development, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 443–465.

    Article  PubMed  CAS  Google Scholar 

  20. Bartel, B., Auxin Biosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 51–66.

    Article  PubMed  CAS  Google Scholar 

  21. Glawischnig, E., Adriana, T., Eisenreich, W., Spiteller, P., Bacher, A., and Gierl, A., Auxin Biosynthesis in Maize Kernels, Plant Physiol., 2000, vol. 123, pp. 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  22. Cohen, J.D., Slovin, J.P., and Hendrickson, A.M., Two Genetically Discrete Pathways Convert Tryptophan to Auxin: More Redundancy in Auxin Biosynthesis, Trends Plant Sci., 2003, vol. 8, pp. 197–199.

    Article  PubMed  CAS  Google Scholar 

  23. Chandler, J.W., Local Auxin Production: A Small Contribution to a Big Field, BioEssays, 2009, vol. 31, pp. 60–70.

    Article  PubMed  CAS  Google Scholar 

  24. Delker, C., Raschke, A., and Quint, M., Auxin Dynamics: The Dazzling Complexity of a Small Molecule’s Message, Planta, 2008, vol. 227, pp. 929–941.

    Article  PubMed  CAS  Google Scholar 

  25. Ljung, K., Hull, A.K., Kowalczyk, M., Marchant, A., Celenza, J., Cohen, J.D., and Sandberg, G., Biosynthesis, Conjugation, Catabolism and Homeostasis of Indole-3-Acetic Acid in Arabidopsis thaliana, Plant Mol. Biol., 2002, vol. 49, pp. 249–272.

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M., and Sazuka, T., Auxin Biosynthesis by the YUCCA Genes in Rice, Plant Physiol., 2007, vol. 143, pp. 1362–1371.

    Article  PubMed  CAS  Google Scholar 

  27. Tobena-Santamaria, R., Bliek, M., Ljung, K., Sandberg, G., Souer, E., and Koes, R., FLOOZY of Petunia Is a Flavin Mono-Oxygenase-Like Protein Required for the Specification of Leaf and Flower Architecture, Genes Dev., 2002, vol. 16, pp. 753–763.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang, R., Wang, B., Ouyang, J., Li, J., and Wang, Y., Arabidopsis Indole Synthase, a Homolog of Tryptophan Synthase Alpha, Is an Enzyme Involved in the Trp-Independent Indole-Containing Metabolite Biosynthesis, J. Integr. Plant Biol., 2008, vol. 50, pp. 1070–1077.

    Article  PubMed  CAS  Google Scholar 

  29. Ostin, A., Ilic, N., and Cohen, J.D., An In Vitro System from Maize Seedlings for Tryptophan-Independent Indole-3-Acetic Acid Biosynthesis, Plant Physiol., 1999, vol. 119, pp. 173–178.

    Article  PubMed  CAS  Google Scholar 

  30. Zhao, Y., Auxin Biosynthesis and Its Role in Plant Development, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 49–64.

    Article  PubMed  CAS  Google Scholar 

  31. Radley, M., Gibberellin-Like Substances in Plants, Nature, 1961, vol. 191, pp. 684–685.

    Article  PubMed  CAS  Google Scholar 

  32. Jennings, R.C., Gibberellins as Endogenous Growth Regulators in Green and Brown Algae, Planta, 1968, vol. 80, pp. 34–42.

    Article  CAS  Google Scholar 

  33. Schwender, J., Seemann, M., Lichtenthaler, H.K., and Rohmers, M., Biosynthesis of Isoprenoids (Carotenoids, Sterols, Prenyl Side-Chains of Chlorophylls and Plastoquinone) via a Novel Pyruvate/Glyceraldehyde 3-Phosphate Nonmevalonate Pathway in the Green Alga Scenedesmus obliquus, Biochem. J., 1996, vol. 316, pp. 73–80.

    PubMed  CAS  Google Scholar 

  34. Ershov, Yu.V., Methylerythritol Phosphate (Non-Mevalonate) Pathway for the Biosynthesis of Isoprenoids, Usp. Biol. Khim., 2005, vol. 45, pp. 307–354.

    CAS  Google Scholar 

  35. Schwender, J., Gemünden, C., and Lichtenthaler, H.K., Chlorophyta Exclusively Use the 1-Deoxyxylulose 5-Phosphate/2-C-Methylerythritol 4-Phosphate Pathway for the Biosynthesis of Isoprenoids, Planta, 2001, vol. 212, pp. 416–423.

    Article  PubMed  CAS  Google Scholar 

  36. Sponsel, V.M., The Deoxyxylulose Phosphate Pathway for the Biosynthesis of Plastidic Isoprenoids: Early Days in Our Understanding of the Early Stages of Gibberellin Biosynthesis, J. Plant Growth Regul., 2001, vol. 20, pp. 332–345.

    Article  PubMed  CAS  Google Scholar 

  37. Kasahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya, Y., and Yamaguchi, S., Contribution of the Mevalonate and Methylerythritol Phosphate Pathways to the Biosynthesis of Gibberellins in Arabidopsis, J. Biol. Chem., 2002, vol. 277, pp. 45-188–45-194.

    Article  CAS  Google Scholar 

  38. Yamaguchi, S., Saito, T., Abe, H., Yamane, H., and Murofushi, N., Molecular Cloning and Characterization of a cDNA Encoding the Gibberellin Biosynthetic Enzyme ent-Kaurene Synthase B from Pumpkin (Cucurbita maxima L.), Plant J., 1996, vol. 10, pp. 203–213.

    Article  PubMed  CAS  Google Scholar 

  39. Helliwell, C.A., Chandler, P.M., Poole, A., Dennis, E.S., and Peacock, W.J., The CYP88A Cytochrome P450, ent-Kaurenoic Acid Oxidase, Catalyzes Three Steps of the Gibberellin Biosynthesis Pathway, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 2065–2070.

    PubMed  CAS  Google Scholar 

  40. Sun, T.P. and Kamiya, Y., The Arabidopsis GA1 Locus Encodes the Cyclase ent-Kaurene Synthetase A of Gibberellin Biosynthesis, Plant Cell, 1994, vol. 6, pp. 1509–1518.

    PubMed  CAS  Google Scholar 

  41. Hedden, P. and Kamiya, Y., Gibberellin Biosynthesis: Enzymes, Genes and Their Regulation, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 431–460.

    Article  PubMed  CAS  Google Scholar 

  42. Hedden, P. and Proebsting, W.M., Analysis of Gibberellin Biosynthesis, Plant Physiol., 1999, vol. 119, pp. 365–370.

    Article  PubMed  CAS  Google Scholar 

  43. Helliwell, C.A., Sullivan, J.A., Mould, R.M., Gray, J.C., Peacock, W.J., and Dennis, E.S., A Plastid Envelope Location of Arabidopsis ent-Kaurene Oxidase Links the Plastid and Endoplasmic Reticulum Steps of the Gibberellin Biosynthesis Pathway, Plant J., 2001, vol. 28, pp. 201–208.

    Article  PubMed  CAS  Google Scholar 

  44. Swaminathan, S. and Bock, R.M., Subcellular Localization of Cytokinins in Transfer Ribonucleic Acid, Plant Physiol., 1977, vol. 59, pp. 558–563.

    Article  PubMed  CAS  Google Scholar 

  45. Jennings, R.C., Cytokinins as Endogenous Growth Regulators in the Algae Ecklonia (Phaeophyta) and Hypnea (Rhodophyta), Aust. J. Biol. Sci., 1969, vol. 22, pp. 621–627.

    CAS  Google Scholar 

  46. García-Jiménez, P., Rodrigo, M., and Robaina, R.R., Influence of Plant Growth Regulators, Polyamines and Glycerol Interaction on Growth and Morphogenesis of Carposporelings of Grateloupia doryphora Cultured In Vitro, J. Appl. Phycol., 1998, vol. 10, pp. 95–100.

    Article  Google Scholar 

  47. Ördög, V., Stirk, W.A., van Staden, J., Novák, O., and Strnad, M., Endogenous Cytokinins in Three Genera of Microalgae from the Chlorophyta, J. Phycol., 2004, vol. 40, pp. 88–95.

    Article  Google Scholar 

  48. Tarakhovskaya, E.R. and Maslov, Yu.I., Effects of Phytohormones and Trophic Factors on Some Characteristics of Fucus vesiculosus and Euglena gracilis Photosynthetic Apparatus, Vestn. St. Petersburg Gos. Univ., Ser. 3: Biol., 2005, no. 3, pp. 121–128.

  49. Mok, M.C., Martin, R.C., and Mok, D.W.S., Cytokinins: Biosynthesis Metabolism and Perception, In Vitro Cell Dev. Biol. — Plant, 2000, vol. 36, pp. 102–107.

    Article  CAS  Google Scholar 

  50. Chen, C.-M., Cytokinin Biosynthesis and Interconversion, Physiol. Plant., 1997, vol. 101, pp. 665–673.

    Article  CAS  Google Scholar 

  51. Nimura, K. and Mizuta, H., Inducible Effects of Abscisic Acid on Sporophyte Discs from Laminaria japonica Areschoug (Laminariales, Phaeophyceae), J. Appl. Phycol., 2002, vol. 14, pp. 159–163.

    Article  CAS  Google Scholar 

  52. Yokoya, N.S., Stirk, W.A., Staden, J., Novak, O., Tureckova, V., Pencík, A., and Strnad, M., Endogenous Cytokinins, Auxins, and Abscisic Acid in Red Algae from Brazil, J. Phycol., 2010, vol. 46, pp. 1198–1205.

    Article  CAS  Google Scholar 

  53. Tominaga, N., Takahata, M., and Tominaga, H., Effects of NaCl and KNO3 Concentrations on the Abscisic Acid Content of Dunaliella sp. (Chlorophyta), Hydrobiology, 1993, vol. 267, pp. 163–168.

    Article  CAS  Google Scholar 

  54. Bajguz, A., Brassinosteroid Enhanced the Level of Abscisic Acid in Chlorella vulgaris Subjected to Short Term Heat Stress, J. Plant Physiol., 2009, vol. 166, pp. 882–886.

    Article  PubMed  CAS  Google Scholar 

  55. Cutler, A.J. and Krochko, J.E., Formation and Breakdown of ABA, Trends Plant Sci., 1999, vol. 4, pp. 472–478.

    Article  PubMed  Google Scholar 

  56. Seo, M. and Koshiba, T., Complex Regulation of ABA Biosynthesis in Plants, Trends Plant Sci., 2002, vol. 7, pp. 41–48.

    Article  PubMed  CAS  Google Scholar 

  57. Baroli, I. and Niyogi, K.K., Molecular Genetics of Xanthophyll-Dependent Photoprotection in Green Algae and Plants, Phil. Trans. R. Soc. London, 2000, vol. 355, pp. 1385–1394.

    Article  CAS  Google Scholar 

  58. Cowan, A.K. and Rose, P.D., Abscisic Acid Metabolism in Salt-Stressed Cells of Dunaliella salina. Possible Interrelationship with β-Carotene Accumulation, Plant Physiol., 1991, vol. 97, pp. 798–803.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Shishova.

Additional information

Original Russian Text © A.A. Kiseleva, E.R. Tarachovskaya, M.F. Shishova, 2012, published in Fiziologiya Rastenii, 2012, Vol. 59, No. 5, pp. 643–659.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiseleva, A.A., Tarachovskaya, E.R. & Shishova, M.F. Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59, 595–610 (2012). https://doi.org/10.1134/S1021443712050081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443712050081

Keywords

Navigation