Skip to main content
Log in

Structural, physiological, and biochemical aspects of salinity tolerance of halophytes

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Modern concepts on structural, physiological, and biochemical aspects of salt tolerance of higher plants were considered. Integral physiological processes, such as growth and photosynthesis of glycophytes and halophytes in the context of their ecological plasticity, variety of their adaptive strategies developed in the course of their evolution, and natural selection, were discussed. Analysis of the known anatomical and morphological adaptations of halophytes (succulence, special salt-excreting structures, features associated with special tissues growth, leaf kranz-anatomy and mesostructure) providing their salt tolerance was conducted. The most important physiological and biochemical adaptations of such plants to salinity related to uptake, accumulation and excretion of Na+ and Cl, peculiarities of membrane composition and the pigment system, and protection against osmotic and oxidative stresses were described. The association of physiological and biochemical peculiarities of halophytes with ecological salt tolerance strategy was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DGDG:

digalactosyldiacyl glycerol

FA:

fatty acid

LHC:

light-harvesting complex

MGDG:

monogalactosyldiacyl glycerol

PC:

phosphatidyl choline

PE:

phosphatidyl ethanolamine

PEP:

phosphoenol piruvate kinase

PG:

phosphatidylglycerol

PS:

photosystem

RBPC/O:

ribuloso bisphosphate carboxylase/oxygenase

SHDG:

sulfohinovosyldiacyl glycerol

SOD:

superoxide dismutase.

References

  1. Rengasamy, P., World salinization with emphasis on Australia, J. Exp. Bot., 2006, vol. 57, pp. 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  2. Flowers, T.J. and Colmer, T.D., Salinity tolerance in halophytes, New Phytol., 2008, vol. 179, pp. 945–963.

    Article  CAS  PubMed  Google Scholar 

  3. Khitrov, N.B., Rukhovich, D.I., Kalinina, N.V., Novikova, A.F., Pankova, E.I., and Chernousenko, G.I., Estimation of the areas of salt-affected soils in the European part of Russia on the basis of a digital map of soil salinization on a scale of 1: 2.5 M, Eur. Soil Sci., 2009, vol. 42, no. 6, pp. 581–590.

    Article  Google Scholar 

  4. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  5. Flowers, T.J., Galal, H.K., and Bromham, L., Evolution of halophytes: multiple origins of salt tolerance in land plant, Funct. Plant Biol., 2010, vol. 37, pp. 604–612.

    Article  Google Scholar 

  6. Geissler, N., Hussin, S., and Koyro, H.-W., Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L., Environ. Exp. Bot., 2009, vol. 65, pp. 220–231.

    Article  CAS  Google Scholar 

  7. Munns, R., Comparative physiology of salt and water stress, Plant Cell Environ., 2002, vol. 25, pp. 239–250.

    Article  CAS  PubMed  Google Scholar 

  8. Carillo, P., Annunziata, M.G., Pontecorvo, G., Fuggi, A., and Woodrow, P., Salinity stress and salt tolerance, in Abiotic Stress in Plants—Mechanisms and Adaptations, Shanker, A.K. and Venkateswarlu, B., Eds., Rijeka: InTech, 2011, pp. 22–38. http://intechopen. com.

    Google Scholar 

  9. Koyro, H.-W., Geissler, N., and Hussin, S., Survival at extreme locations: life strategies of halophytes, in Salinity and Water Stress, Ashraf, M., Ozturk, M., and Athar, H.R., Eds., Dordrecht: Springer-Verlag, 2009, pp. 167–177.

    Chapter  Google Scholar 

  10. Parida, A.K. and Das, A.B., Salt tolerance and salinity effects on plants, Ecotoxicol. Environ. Saf., 2005, vol. 60, pp. 324–349.

    Article  CAS  PubMed  Google Scholar 

  11. Shamsutdinov, Z.Sh., Savchenko, I.V., and Shamsutdinov, N.Z., Galofity Rossii, ikh ekologicheskaya otsenka i ispol’zovanie (Halophytes in Russia, Their Ecological Estimation and Use), Moscow: Edel’-M, 2001.

    Google Scholar 

  12. Dajic, Z., Salt stress, in Physiology and Molecular Biology of Salt Tolerance in Plant, Madhava, Rao, K.V., Raghavendra, A.S., and Janardhan, Reddy, K., Eds., Dordrecht: Springer-Verlag, 2006, pp. 41–99.

    Chapter  Google Scholar 

  13. Lambers, H., Dry land salinity: a key environmental issue in southern Australia, Plant Soil, 2003, vol. 257, pp. 5–7.

    Article  Google Scholar 

  14. Grigore, M.-N. and Toma, C., Integrative ecological notes on halophytes from “Valea ilenei” (Lasi) nature reserve, Mem. Sci. Sect. Rom. Acad., 2014, vol. 37, pp. 18–36.

    Google Scholar 

  15. Hasanuzzaman, M., Nahar, K., Alam, M., Bhowmik, P.C., Hossain, A., Rahman, M.M., Prasad, M.N.V., Ozturk, M., and Fujita, M., Potential use of halophytes to remediate saline soils, BioMed. Res. Int., 2014, vol. 2014, art. ID 589341. http://dx.doi.org/ doi 10.1155/2014/589341.

  16. Lv, S., Jiang, P., Chen, X., Fan, P., Wang, X., and Li, Y., Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea, Plant Physiol. Biochem., 2012, vol. 51, pp. 47–52.

    Article  CAS  PubMed  Google Scholar 

  17. Amiri, B., Assareh, M.H., Jafari, M., Rasuoli, B., Arzani, H., and Jafari, A.A., Effect of salinity on growth, ion content and water status of glasswort (Salicornia herbacea L.), Casp. J. Environ. Sci., 2010, vol. 8, pp. 79–87.

    Google Scholar 

  18. Redondo-Gomez, S., Wharmby, C., Castillo, J.M., Mateos-Naranjo, E., Luque, C.J., de Cires, A., Luque, T., Davy, A., and Figueroa, M.E., Growth and photosynthetic responses to salinity in an extreme halophyte Sarcocornia fruticosa, Physiol. Plant., 2006, vol. 128, pp. 116–124.

    Article  CAS  Google Scholar 

  19. Baoshan, C., Qiang, H., and Xinsheng, Z., Ecological thresholds of Suaeda salsa to the environmental gradients of water table depth and soil salinity, Acta Ecol. Sin., 2008, vol. 28, pp. 1408–1418.

    Article  Google Scholar 

  20. Ogburn, R.M. and Edwards, E.J., The ecological water-use strategies of succulent plants, Adv. Bot. Res., 2010, vol. 55, pp. 179–255.

    Article  Google Scholar 

  21. Freitag, Y., Golud, V.B., and Yuritsyna, N.A., Halophytic plant communities in the northern Caspian lowlands. 1. Annual halophytic communities, Phytocenologia, 2001, vol. 31, pp. 63–108.

    Google Scholar 

  22. Breckle, S.-W., How do halophytes overcome salinity? in Biology of Salt Tolerant Plants, Khan, M.A. and Ungar, I.A., Eds., Karachi: Pak. Univ. Karachi, 1995, pp. 199–213.

    Google Scholar 

  23. Serag, M.S., Ecology of four succulent halophytes in the Mediterranean coast of Damietta, Egypt, Estuar. Coast. Shelf Sci., 1999, vol. 49, pp. 29–36.

    Article  CAS  Google Scholar 

  24. Khan, M.A., Ungar, I.A., and Showalter, A.M., Salt stimulation and tolerance in inter-tidal stem-succulent halophyte, J. Plant Nutr., 2005, vol. 28, pp. 1365–1374.

    Article  CAS  Google Scholar 

  25. Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., Ueno, O., Nakahara, T., Nose, A., and Cushman, J.C., Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum, J. Exp. Bot., 2007, vol. 58, pp. 1957–1967.

    Article  CAS  PubMed  Google Scholar 

  26. Daraban, I.-N., Mihali, C.V., Turcus, V., Ardelean, A., and Arsene, G.-G., ESEM and DAX observations on leaf and stem epidermal structures (stoma and salt glands) in Limonium gmelinii (Willd.) Kuntze, Ann. Roman. Soc. Cell Biol., 2013, vol. 18, pp. 123–130.

    Google Scholar 

  27. Grigore, M.-N., Ivanescu, L., and Toma, C., Halophytes: An Integrative Anatomical Study, Dordrecht: Springer-Verlag, 2014.

    Google Scholar 

  28. Soniya, M.L. and Krishnakumar, G., Studies on ecological anatomy of the mangrove fern Acrostichum aureum L., Int. J. Plant Anim. Environ. Sci., 2014, vol. 4, pp. 195–200.

    Google Scholar 

  29. Naz, N., Hameed, M., Nawaz, T., Batool, R., Ashraf, M., Ahmad, F., and Ruby, T., Structural adaptations in the desert halophyte Aeluropus lagopoides (Linn.) Trin. ex Thw. under high salinity, J. Biol. Res.-Thessalon., 2013, vol. 19, pp. 150–164.

    Google Scholar 

  30. Shabala, S. and Mackay, A., Ion transport in halophytes, Adv. Bot. Res., 2011, vol. 57, pp. 151–187.

    Article  CAS  Google Scholar 

  31. Hameed, M., Nawaz, T., Ashraf, M., Tufail, A., Kanwal, H., Sajid, M., Ahmad, A., and Ahmad, I., Leaf anatomical adaptations of some halophytic and xerophytic sedges of the Punjab, Pak. J. Bot., 2012, vol. 44, pp. 159–164.

    Google Scholar 

  32. Sage, R.F., Christin, P.-A., and Edwards, E.J., The C4 plant lineages of planet Earth, J. Exp. Bot., 2011, vol. 62, pp. 3155–3169.

    Article  CAS  PubMed  Google Scholar 

  33. Rozentsvet, O.A., Bogdanova, E.S., Ivanova, L.A., Ivanov, L.A., Tabalenkova, G.N., Zakhozhiy, I.G., and Nesterov, V.N., Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance, Photosynthetica, 2016, vol. 54, pp. 1–10.

    Article  Google Scholar 

  34. Tester, N. and Davenport, R., Na+ tolerance and Na+ transport in higher plants, Ann. Bot., 2003, vol. 91, pp. 1–25.

    Article  Google Scholar 

  35. Blumwald, E., Aharon, G.S., and Apse, M.P., Sodium transport in plant cells, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 140–151.

    Article  CAS  PubMed  Google Scholar 

  36. Balnokin, Yu.B., Ionnyi gomeostaz i soleustoichivost’ rastenii (Ion Homeostasisand Salt Tolerance of Plants), Moscow: Nauka, 2012.

    Google Scholar 

  37. Dreyer, I. and Uozumi, N., Potassium channels in plant cells, FEBS J., 2011, vol. 278, pp. 4293–4303.

    Article  CAS  PubMed  Google Scholar 

  38. Lebaudy, A., Very, A., and Sentenac, H., K+ channel activity in plants: genes, regulations and functions, FEBS Lett., 2007, vol. 581, pp. 2357–2366.

    Article  CAS  PubMed  Google Scholar 

  39. Khan, M.S., Role of sodium and hydrogen (Na+/H+) antiporters in salt tolerance of plants: present and future challenges, Afr. J. Biotechnol., 2011, vol. 10, pp. 13693–13704.

    Article  CAS  Google Scholar 

  40. Bassil, E., Ohto, M., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T., and Blumwald, E., The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development, Plant Cell, 2011, vol. 23, pp. 224–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Medvedev, S.S., Elektrofiziologiya rastenii (Plant Electrophysiology), St. Petersburg: St.-Petersburg. Univ., 2012.

    Google Scholar 

  42. Lv, S., Jiang, P., Chen, X., Fan, P., Wang, X., and Li, Y., Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea, Plant Physiol. Biochem., 2012, vol. 51, pp. 47–52.

    Article  CAS  PubMed  Google Scholar 

  43. Cosentino, C., Na+/H+ transporters of the halophyte Mesembryanthemum crystallinum L., Ph.D. Thesis, Darmstadt: Techn. Univ. Darmstadt, 2008.

    Google Scholar 

  44. Ballesteros, E., Dnaiire, J., and Belver, A., Effects of salt stress on H+-ATPase and H+-PPase activities of tonoplast-enriched vesicles isolated from sunflower roots, Physiol. Plant., 1996, vol. 97, pp. 249–268.

    Article  Google Scholar 

  45. Plett, D.G. and Moller, I.S., Na+ transport in glycophytic plants: what we know and would like to know? Plant Cell Environ., 2010, vol. 33, pp. 612–626.

    Article  CAS  Google Scholar 

  46. Niu, X., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M., Ion homeostasis in NaCl stress environments, Plant Physiol., 1995, vol. 109, pp. 735–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. White, P.J. and Broadley, M.R., Chloride in soils and its uptake and movement within the plant, Ann. Bot., 2001, vol. 88, pp. 967–988.

    Article  CAS  Google Scholar 

  48. Balnokin, Yu.V., Kurkova, E.B., Khalilova, L.A., Myasoedov, N.A., and Yusufov, A.G., Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport, Russ. J. Plant Physiol., 2007, vol. 54, pp. 797–805.

    Article  CAS  Google Scholar 

  49. Agarwal, P.K., Shukla, P.S., Gupta, K., and Jha, B., Bioengineering for salinity tolerance in plants: state of the art, Mol. Biotechnol., 2013, vol. 54, pp. 102–123.

    Article  CAS  PubMed  Google Scholar 

  50. Rozentsvet, O.A., Nesterov, V.N., Bogdanova, E.S., Tabalenkova, G.N., and Zakhozhiy, I.G., Biochemical conditionality of differentiation of halophytes by the type of regulation of salt metabolism in Prieltonye, Contemp. Probl. Ecol., 2016, vol. 9, no. 1, pp. 98–106.

    Article  Google Scholar 

  51. Zorb, C., Summer, A., Sungur, A., Flowers, T.J., and Ozcan, H., Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance, Turk. J. Bot., 2013, vol. 37, pp. 1125–1133.

    Article  Google Scholar 

  52. Ma, X.L., Wang, Z.L., and Qi, Y.C., Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress, Acta Bot. Sin., 2003, vol. 45, pp. 1359–1365.

    CAS  Google Scholar 

  53. Rahdari, P. and Hoseini, S.M., Salinity stress: a review, Tech. J. Engin. App. Sci., 2011, vol. 1, no. 3, pp. 63–66.

    Google Scholar 

  54. Doganlar, Z.B., Demir, K., Basak, H., and Gul, I., Effects of salt stress on pigment and total soluble protein contents of the three different tomato cultivars, Afr. J. Agric., 2010, vol. 5, pp. 2056–2065.

    Google Scholar 

  55. Hare, P.D., Cress, W.A., and van Staden, J., Dissecting the roles of osmolyte accumulation during stress, Plant Cell Environ., 1998, vol. 21, pp. 535–553.

    Article  CAS  Google Scholar 

  56. Wang, Y. and Nil, N., Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress, J. Hortic. Sci. Biotechnol., 2000, vol. 75, pp. 623–627.

    Article  CAS  Google Scholar 

  57. Koyro, H.-W., Zörb, C., Debez, A., and Huchzermeyer, B., The effect of hyperosmotic salinity on protein patterns and enzyme activities of halophytes, Funct. Plant Biol., 2013, vol. 40 P, pp. 787–804.

    CAS  Google Scholar 

  58. Amirjani, M.R., Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice, Int. J. Bot., 2011, vol. 7, pp. 73–81.

    Article  CAS  Google Scholar 

  59. Kreslavski, V.D., Carpentier, R., Klimov, V.V., Murata, N., and Allakhverdiev, S.I., Molecular mechanisms of stress resistance of the photosynthetic apparatus, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 2007, vol. 1, no. 3, pp. 185–205.

    Google Scholar 

  60. Balnokin, Yu.V., Kurkova, E.B., Myasoedov, N.A., Lun’kov, R.V., Shamsutdinov, N.Z., Egorova, E.A., and Bukhov, N.G., Structural and functional state of thylakoids in a halophyte Suaeda altissima before and after disturbance of salt–water balance by extremely high concentrations of NaCl, Russ. J. Plant Physiol., 2004, vol. 51, pp. 815–821.

    Article  CAS  Google Scholar 

  61. Sengupta, S. and Majumder, A.L., Porteresia coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt-stress biology in rice, Plant Cell Environ., 2010, pp. 526–542.

    Google Scholar 

  62. Ramani, B., Zorn, H., and Papenbrock, J., Quantification and fatty acid profiles of sulfolipids in two halophytes and glycophyte grown under different salt concentrations, Z. Naturforsch. C, 2004, vol. 59, pp. 835–842.

    Article  CAS  PubMed  Google Scholar 

  63. Sage, R.F., Sage, T.L., and Kocacinar, F., Photorespiration and the evolution of C4 photosynthesis, Annu. Rev. Plant Biol., 2012, vol. 63, pp. 19–47.

    Article  CAS  PubMed  Google Scholar 

  64. Koteyeva, N.K., Voznesenskaya, E.V., Berry, J.O., Chuong, D.X., Franceschi, V.R., and Edwards, G.E., Development of structural and biochemical characteristics of C4 photosynthesis in two types of Kranz anatomy in genus Suaeda (family Chenopodiaceae), J. Exp. Bot., 2011, vol. 62, pp. 3197–3212.

    Article  CAS  PubMed  Google Scholar 

  65. Cushman, J.C., Michalowski, C.B., and Bohnert, H.J., Developmental control of Crassulacean acid metabolism inducibility by salt stress in the common ice plant, Plant Physiol., 1990, vol. 94, pp. 1137–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schaller, H., New aspects of sterol biosynthesis in growth and development of higher plants, Plant Physiol. Biochem., 2004, vol. 42, pp. 465–476.

    Article  CAS  PubMed  Google Scholar 

  67. López-Pérez, L., Martínez-Ballesta, M.C., Maurel, C., and Carvajal, M., Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity, Phytochemistry, 2009, vol. 70, pp. 492–500.

    Article  PubMed  Google Scholar 

  68. Martz, F., Sutinen, M., Kiviniemi, S., and Palta, J., Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation, Tree Physiol., 2006, vol. 26, pp. 783–790.

    Article  CAS  PubMed  Google Scholar 

  69. Allakhverdiev, S.I., Nishiyama, Y., Suzuki, I., Tasaka, Y., and Murata, N., Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5862–5867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, J., Seliskar, D., and Gallagher, J., The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress, Am. J. Bot., 2005, vol. 92, pp. 852–858.

    Article  CAS  PubMed  Google Scholar 

  71. Minoda, A., Sonoike, K., Okada, K., Sato, N., and Tsuzuki, M., Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDGdeficient mutant of Chlamydomonas, FEBS Lett., 2003, vol. 553, pp. 109–112.

    Article  CAS  PubMed  Google Scholar 

  72. Sui, N., Li, M., Li, K., Song, J., and Wang, B.S., Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem IIunder high salinity, Photosynthetica, 2010, vol. 48, pp. 623–629.

    Article  CAS  Google Scholar 

  73. Sato, N., Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution, J. Plant Res., 2004, vol. 117, pp. 495–505.

    Article  CAS  PubMed  Google Scholar 

  74. Hirayama, O. and Mihara, M., Characterization of membrane lipids of higher plants different in salt tolerance, Agric. Biol. Chem., 1987, vol. 51, pp. 3215–3221.

    CAS  Google Scholar 

  75. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Membrane-forming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia, Phytochemistry, 2014, vol. 105, pp. 37–42.

    Article  CAS  PubMed  Google Scholar 

  76. Ghars, M.A., Richard, L., Lefebre-De Vos, D., Leprince, A.-S., Parre, E., Bordenave, M., Abdelly, C., and Savouré, A., Phospholipase C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress, Plant Cell Physiol., 2012, vol. 53, pp. 183–192.

    Article  CAS  PubMed  Google Scholar 

  77. Rahdari, P., Tavakoli, S., and Hosseini, S.M., Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves, Stress Physiol. Biochem. J., 2012, vol. 8, pp. 182–193.

    Google Scholar 

  78. Hala, M., El-Bassiouny, S., and Bekheta, M.A., Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars, Int. J. Agric. Biol., 2005, vol. 3, pp. 363–368.

    Google Scholar 

  79. Bose, J., Rodrigo-Moreno, A., and Shabala, S., ROS homeostasis in halophytes in the context of salinity stress tolerance, J. Exp. Bot., 2014, vol. 65, no. 5, pp. 1241–1257.

    Article  CAS  PubMed  Google Scholar 

  80. Asada, K., Production and scavenging of reactive oxygen species in chloroplasts and their functions, Plant Physiol., 2006, vol. 141, pp. 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jithesh, M.N., Prashanth, S.R., Sivaprakash, K.R., and Parida, A.K., Antioxidative response mechanisms in halophytes: their role in stress defence, J. Genet., 2006, vol. 85, no. 3, p. 237–254.

    Article  CAS  PubMed  Google Scholar 

  82. Ozgur, R., Uzilday, B., Sekmen, A.H., and Turkan, I., Reactive oxygen species regulation and antioxidant defence in halophytes, Funct. Plant Biol., 2013, vol. 40, pp. 832–847.

    CAS  Google Scholar 

  83. Allakhverdiev, S.I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y., and Murata, N., Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis, Plant Physiol., 2002, vol. 130, pp. 1443–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Noctor, G., de Paepe, R., and Foyer, C.H., Mitochondrial redox biology and homeostasis in plants, Trends Plant Sci., 2007, vol. 12, pp. 125–134.

    Article  CAS  PubMed  Google Scholar 

  85. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Mittler, R., Reactive oxygen species homeostasis and signalling during drought and salinity stresses, Plant Cell Environ., 2010, vol. 33, pp. 453–467.

    Article  CAS  PubMed  Google Scholar 

  86. Ben Amor, N., Jiménez, A., Megdiche, W., Lundqvist, M., Sevilla, F., and Abdelly, C., Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima, Physiol. Plant., 2006, vol. 126, pp. 446–457.

    Article  CAS  Google Scholar 

  87. Takemura, T., Hanagata, N., Dubinsky, Z., and Karube, I., Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza, Trees, 2002, vol. 16, pp. 94–99.

    Article  CAS  Google Scholar 

  88. Parida, A.K., Das, A.B., and Mohanty, P., Defense potentials to NaCl in a mangrove, differential changes of isoforms of some antioxidative enzymes, J. Plant Physiol., 2004, vol. 161, pp. 531–542.

    Article  CAS  PubMed  Google Scholar 

  89. Cherian, S., Reddy, M.P., and Pandya, J.B., Studies on salt tolerance in Avicennia marina (Forsk.) Vierh.: effect of NaCl salinity on growth, ion accumulation and enzyme activity, Ind. J. Plant Physiol., 1999, vol. 4, pp. 266–270.

    CAS  Google Scholar 

  90. Alscher, R.G., Erturk, N., and Heath, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 2002, vol. 53, pp. 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  91. Wang, B., Luttge, U., and Ratajczak, R., Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L., J. Plant Physiol., 2004, vol. 161, pp. 285–293.

    Article  CAS  PubMed  Google Scholar 

  92. Sekmen, A.H., Turkan, I., and Takio, S., Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media, Physiol. Plant., 2007, vol. 131, pp. 399–411.

    Article  CAS  PubMed  Google Scholar 

  93. Kuznetsov, Vl.V. and Shevyakova, N.I., Proline under stress: biological role, metabolism, and regulation, Russ. J. Plant Physiol., 1999, vol. 46, pp. 274–288.

    CAS  Google Scholar 

  94. Lokhande, V.H., Prospects of halophytes in understanding and managing abiotic stress tolerance, in Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change, Ahmad, P. and Prasad, M.N.V., Eds., New York: Springer-Verlag, 2012, pp. 29–56.

    Chapter  Google Scholar 

  95. Slama, I., Ghnaya, T., Savouré, A., and Abdelly, C., Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum, C. R. Biol., 2008, vol. 331, pp. 442–451.

    Article  CAS  PubMed  Google Scholar 

  96. Abebe, T., Guenzi, A.C., Martin, B., and Cushman, J.C., Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity, Plant Physiol., 2003, vol. 131, pp. 1748–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hameed, A. and Khan, M.A., Halophytes: biology and economic potentials, Karachi Univ. J. Sci., 2011, vol. 39, pp. 40–44.

    Google Scholar 

  98. Qasim, M., Gulzar, S., Shinwari, Z.K., and Khan, M.A., Traditional ethno-botanical uses of halophytes from Hub, Balochistan, Pak. J. Bot., 2010, vol. 42, pp. 1543–1551.

    Google Scholar 

  99. Shabala, S., Bose, J., and Hedrich, R., Salt bladders: do they matter? Trends Plant Sci., 2014, vol. 19, pp. 687–691.

    Article  CAS  PubMed  Google Scholar 

  100. Song, J. and Wang, B., Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model, Ann. Bot., 2015, vol. 115, no. 3, pp. 541–553. https://doi.org/10.1093/aob/mcu194.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Rozentsvet.

Additional information

Original Russian Text © O.A. Rozentsvet, V.N. Nesterov, E.S. Bogdanova, 2017, published in Fiziologiya Rastenii, 2017, Vol. 64, No. 4, pp. 251–265.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozentsvet, O.A., Nesterov, V.N. & Bogdanova, E.S. Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russ J Plant Physiol 64, 464–477 (2017). https://doi.org/10.1134/S1021443717040112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717040112

Keywords

Navigation