Skip to main content
Log in

Carbon nanofiber paper cathode modification for higher performance of phosphoric acid fuel cells on polybenzimidazole membrane

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Entire carbon nanofiber mats (carbon nanofiber paper) based on polyacrylonitrile pyropolymer composite were prepared by the preliminary oxidation (stabilization) of the initial polymer at 250–350°C in air and following pyrolysis at 800–1200°C under vacuum. The mats were tested as cathodes in a fuel cell on polybenzimidazole membrane. Properties of the pyropolymers which were obtained by polymer carbonization could be significantly changed by the addition of specific additives to polyacrylonitrile and also by changing thermal treatment. Particularly, the addition of Ketjen Black® or Vulcan® XC72 carbon blacks and polyvinyl pyrrolidone during electrospinning step resulted in increase of material electrical conductivity and inner porosity, which is important for improving fuel cell performance. Depending on oxidation and pyrolysis temperature, the physical properties of platinated carbon nanofiber paper and the efficiency of a fuel cell on polybenzimidazole membrane significantly change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B.C. and Heinzel, A., Nature, 2001, vol. 414, p. 345.

    Article  CAS  Google Scholar 

  2. Debe, M.K., Nature, 2012, vol. 486, p. 43.

    Article  CAS  Google Scholar 

  3. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishukata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N., Chem. Rev., 2007, vol. 107, p. 3904.

    Article  CAS  Google Scholar 

  4. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C., Appl. Energ., 2011, vol. 88, p. 981.

    Article  CAS  Google Scholar 

  5. Xia, Z., Wang, S., Jiang, L., Sun, H., Liu, S., Fu, X., Zhang, B., Su, D.S., Wang, J., and Sun, G., Sci. Rep., vol. 5, p. 16100.

  6. Zhang, J., PEM fuel cell electrocatalyst and catalyst layers, London: Springer, 2008, p. 1137.

    Book  Google Scholar 

  7. Peinemann, K.V. and Nunes, S.P., Membranes for Energy Conversion, vol. 2.

  8. Zeis, R., Beilstein J. Nanotechnol., 2015, vol. 6, p. 68.

  9. Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., and Bujalski, W., J. Power Sources, 2013, vol. 231, p. 264.

    Article  CAS  Google Scholar 

  10. Li, Q., Jensen, J.O., Savinell, R.F., and Bjerrum, N.J., Prog. Polym. Sci., 2009, vol. 34, p. 449.

    Article  CAS  Google Scholar 

  11. Mader, J., Xiao, L., Schmidt, T.J., and Benicewicz, B.C., Adv. Polym. Sci., 2008, vol. 216, p. 63.

    CAS  Google Scholar 

  12. Vang, J.R., Andreasen, S.J., Araya, S.S., and Kaer, S.K., Int. J. Hydrogen Energy, 2014, vol. 39, p. 14959.

    Article  CAS  Google Scholar 

  13. Zagudaeva, N.M., Tarasevich, M.R., and Maleeva, E.A., Al’Ternativnaya energetika ekologiya, 2007, vol. 52, no. 8, p. 79.

    Google Scholar 

  14. Li, X., Chen, X., and Benicewicz, B.C., J. Power Sources, 2013, vol. 245, p. 796.

    Article  Google Scholar 

  15. Hu, J., Zhang, H., Zhai, Y., Liu, G., and Yi, B., Int. J. Hydrogen Energy, 2006, vol. 31, p. 1855.

    Article  CAS  Google Scholar 

  16. Mamlouk, M. and Scott, K., Int. J. Hydrogen Energy, 2010, vol. 35, p. 784.

    Article  CAS  Google Scholar 

  17. Mamlouk, M. and Scott, K., J. Power Sources, 2011, vol. 196, p. 1084.

    Article  CAS  Google Scholar 

  18. Oono, Y., Sounai, A., and Hori, M., J. Power Sources, 2009, vol. 189, p. 943.

    Article  CAS  Google Scholar 

  19. Kwon, K. and Lee, M.-J., Electrochim. Acta, 2008, vol. 54, p. 513.

    Article  CAS  Google Scholar 

  20. Dong, Z., Kennedy, S.J., and Wu, Y., J. Power Sources, 2011, vol. 196, p. 4886.

    Article  CAS  Google Scholar 

  21. Jung, J., Park, B., and Kim, J., Nanoscale Res. Lett., 2012, vol. 7, p. 34.

    Article  Google Scholar 

  22. Antolini, E., Appl. Catal., 2009, vol. 88, p. 1.

    Article  CAS  Google Scholar 

  23. Ignaki, M., Yang, Y., and Kang, F., Adv. Mater., 2012, vol. 24, p. 2547.

    Article  Google Scholar 

  24. Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H., J. Mater. Sci., 2014, vol. 49, p. 463.

    Article  Google Scholar 

  25. Burger, C., Hsiao, B.S., and Chu, B., Annu. Rev. Mater. Res., 2006, vol. 36, p. 333.

    Article  CAS  Google Scholar 

  26. Li, L., Lin, Z., Medford, A.J., and Zhang, X., Carbon, 2009, vol. 47, p. 3346.

    Article  Google Scholar 

  27. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S., Compos. Sci. Technol., 2003, vol. 63, p. 2223.

    Article  CAS  Google Scholar 

  28. Tenchurin, T.Kh., Krasheninnikov, S.N., Orekhov, A.S., Chvalun, S.N., Shepelev, A.D., Belousov, S.I., and Gulyaev, A.I., Fibre Chem., 2014, vol. 46, p. 151.

    Article  CAS  Google Scholar 

  29. Yusof, N. and Ismail, A.F., J. Anal. Appl. Pyrol., 2012, vol. 93, p. 1.

    Article  CAS  Google Scholar 

  30. Park, J.-H., Ju, Y.-W., Park, S.-H., Jung, H.-R., Yang, K.-S., and Lee, W.-J., J. Appl. Electrochem., 2009, vol. 39, p. 1229.

    Article  CAS  Google Scholar 

  31. Lister, S. and McLean, G., J. Power Sources, 2004, vol. 130, p. 61.

    Article  Google Scholar 

  32. Li, M., Han, G., and Yang, B., Electrochem. Commun., 2008, vol. 10, p. 880.

    Article  CAS  Google Scholar 

  33. Che, A.-F., Germain, V., Cretin, M., Cornu, D., Innocent, C., and Tingry, S., New J. Chem., 2011, vol. 35, p. 2848.

  34. Yang, Y., Simeon, F., Hatton, T.A., and Rutledge, G.C., J. Appl. Polym. Sci., 2012, vol. 5, p. 3861.

    Article  Google Scholar 

  35. Ponomarev, I.I., Skupov, K.M., Razorenov, D.Yu., Zhigalina, V.G., Zhigalina, O.M., Ponomarev, Iv.I., Volkova, Yu.A., Kondratenko, M.S., Bukalov, S.S., and Davydova, E.S., Russ. J. Electrochem., 2016, vol. 52, p. 735.

    Article  CAS  Google Scholar 

  36. Ponomarev, I.I., Grinberg, V.A., Emets, V.V., Mayorova, N.A., Zharinova, M.Yu., Volkova, Yu.A., Razorenov, D.Yu., Skupov, K.M., Ponomarev, Iv.I., and Nizhnikovskii, E.A., Russ. J. Electrochem., 2016, vol. 52, p. 525.

    Article  Google Scholar 

  37. Ponomarev, I.I., Ponomarev, Iv.I., Filatov, I.Yu., Filatov, Yu.N., Razorenov, D.Yu., Volkova, Yu.A., Zhigalina, O.M., Zhigalina, V.G., Grebenev, V.V., and Kiselev, N.A., Dokl. Phys. Chem., 2013, vol. 448, p. 23.

    Article  CAS  Google Scholar 

  38. Zhigalina, V.G., Zhigalina, O.M., Ponomarev, I.I., Khmelenin, D.N., Razorenov, D.Yu., Ponomarev, Iv.I., and Kiselev, N.A., Nanomaterialy nanostruktury, XXI Vek, 2012, vol. 3, no. 4, p. 36.

    Google Scholar 

  39. Kondratenko, M.S., Ponomarev, I.I., Gallyamov, M.O., Razorenov, D.Y., Volkova, Y.A., Kharitonova, E.P., and Khokhlov, A.R., Beilstein J. Nanotechnol., 2013, vol. 4, p. 481.

    Article  Google Scholar 

  40. Ponomarev, I.I., Rybkin, Yu.Yu., Goryunov, E.I., Petrovskii, P V., and Lysenko, K.A., Russ. Chem. Bull., 2004, vol. 53, p. 2020.

    Article  CAS  Google Scholar 

  41. Ponomarev, I.I., Goryunov, E.I., Petrovskii, P.V., Ponomarev, Iv.I., Volkova, Yu.A., Razorenov, D.Yu., and Khokhlov, A.R., Dokl. Chem., 2009, vol. 429, p. 315.

    Article  CAS  Google Scholar 

  42. Ponomarev, Iv.I., Ponomarev, I.I., Goryunov, E.I., Volkova, Yu.A., Razorenov, D.Yu., Starikova, Z.A., Blagodatskikh, I.V., Buzin, M.I., and Khokhlov, A.R., Dokl. Chem, 2012, vol. 447, p. 227.

    Article  CAS  Google Scholar 

  43. Ponomarev, Iv.I., Ponomarev, I.I., Volkova, Yu.A., Razorenov, D.Yu., Blagodatskikh, I.V., Volkov, I.O., and Khokhlov, A.R., Dokl. Chem., 2012, vol. 447, p. 249.

    Article  CAS  Google Scholar 

  44. Ponomarev, I.I., Chalykh, A.E., Aliev, A.D., Gerasimov, V.K., Razorenov, D.Yu, Stadnichuk, V.I., Ponomarev, Iv.I., Volkova, Yu.A., and Khokhlov, A.R., Dokl. Phys. Chem., 2009, vol. 429, p. 237.

    Article  CAS  Google Scholar 

  45. Ponomarev, Iv.I., Ponomarev, I.I., Petrovskii, P.V., Volkova, Yu.A., Razorenov, D.Yu., Goryunova, I.B., Starikova, Z.A., Fomenkov, A.I., and Khokhlov, A.R., Dokl. Chem., 2010, vol. 432, p. 168.

    Article  CAS  Google Scholar 

  46. Ponomarev, I.I., Ponomarev, Iv.I., Volkova, Yu.A., Zharinova, M.Y., and Razorenov, D.Yu., Mendeleev Commun., 2012, vol. 22, p. 162.

    Article  CAS  Google Scholar 

  47. Ponomarev, I.I., Razorenov, D.Yu., Ponomarev, Iv. I., Volkova, Yu.A., and Skupov, K.M., Russ. J. Electrochem., 2014, vol. 50, p. 694.

    Article  CAS  Google Scholar 

  48. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., Colloid. Surf. A, 2001, vol. 187, p. 349.

    Article  Google Scholar 

  49. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., J. Power Sources, 2010, vol. 195, p. 5429.

    Article  CAS  Google Scholar 

  50. Su, L., Jia, W., Li, C.-M., and Lei, Y., ChemSusChem, 2014, vol. 7, p. 361.

    Article  CAS  Google Scholar 

  51. Brandon, N.P. and Brett, D.J., Phil. Trans. Roy. Soc. A, 2006, vol. 364, p. 147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Skupov.

Additional information

Original Russian Text © K.M. Skupov, I.I. Ponomarev, D.Yu. Razorenov, V.G. Zhigalina, O.M. Zhigalina, Iv.I. Ponomarev, Yu.A. Volkova, Yu.M. Volfkovich, V.E. Sosenkin, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 7, pp. 820–826.

Published on the basis of a report delivered at the 13th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skupov, K.M., Ponomarev, I.I., Razorenov, D.Y. et al. Carbon nanofiber paper cathode modification for higher performance of phosphoric acid fuel cells on polybenzimidazole membrane. Russ J Electrochem 53, 728–733 (2017). https://doi.org/10.1134/S1023193517070114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517070114

Keywords

Navigation