Skip to main content
Log in

Electrochemical Properties of Nanocomposite Based on Polytriphenylamine Derivative and Single-Walled Carbon Nanotubes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

One-step synthesis of the stable dispersion of conjugated poly(4,4',4"-tris(N,N-diphenylamine) triphenylamine)—single-walled carbon nanotubes nanocomposite is carried out by the oxidative polymerization of the monomer of the triphenylamine derivative with a high density of free radicals of 4,4',4"- tris(N,N-diphenylamine)tripenylamine in the presence of the single-walled carbon nanotubes in concentrated formic acid. Benzoyl peroxide is used as an oxidant. Electroconductive film coatings are prepared by applying stable dispersion onto the Ni substrate. The coatings show a high specific electrochemical capacity and stability in long-term cycling in the aprotic 1 M LiClO4/propylene carbonate electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, F.Y., Liang, J., Tao, Z.L., and Chen, J., Functional materials for rechargeable batteries, Adv. Mater., 2011, vol. 23, no. 15, p. 1695.

    Article  CAS  PubMed  Google Scholar 

  2. Li, H., Wang, Z.X., Chen, L.Q., and Huang, X.J., Research on advanced materials for Li-ion batteries, Adv. Mater., 2009, vol. 21, no. 45, p. 4593.

    Article  CAS  Google Scholar 

  3. Song, Z. and Zhou, H., Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci., 2013, vol. 6, p. 2280.

    Article  CAS  Google Scholar 

  4. Gajendran, P. and Saraswathi, R., Polyaniline–carbon nanotube composites, Pure Appl. Chem., 2008, vol. 80, no. 11, p. 2377.

    Article  CAS  Google Scholar 

  5. Suga, T., Ohshiro H., Sugita, S., Oyaizu, K., and Nishide, H., Emerging N Type redox active radical polymer for a totally organic polymer based rechargeable battery, Adv. Mater., 2009, vol. 21, N. 16, p. 1627.

    Google Scholar 

  6. Oyaizu, K. and Nishide, H., Radical polymers for organic electronic devices: a radical departure from conjugated polymers?, Adv. Mater., 2009, vol. 21, no. 22, p. 2339.

    Article  CAS  Google Scholar 

  7. Creason, S.C., Wheeler, I., and Nelson, RF., Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ion, J. Org. Chem., 1972, vol. 37, p. 4440.

    Article  CAS  Google Scholar 

  8. Yurchenko, O., Freytag, D., Borg, L., et al., Electrochemically induced reversible and irreversible coupling of triarylamines, J. Phys. Chem., 2012, vol. 116, p. 30.

    Article  CAS  Google Scholar 

  9. Negru, O.I. and Grigoras, M., Polytriphenylamines synthesized by interfacial and microemulsion oxidative polymerization, Colloid Polym. Sci., 2014, vol. 292, p. 143.

    Article  CAS  Google Scholar 

  10. Yakushchenko, I.K., Kaplunov, M.G., Efimov, O.N., Belov, M.Yu., and Shamaev, S.N., Polytriphenylamine derivatives as materials for hole transporting layers in electroluminescent devices, Phys. Chem. Chem. Phys.1999, vol. 1, no. 8, p. 1783.

    Google Scholar 

  11. Roberts, M.E., Wheeler, D.R., McKenzie, B.B., and Bunker, B.C., High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine), J. Mater. Chem., 2009, vol. 19, no. 38, p. 6977.

    Article  CAS  Google Scholar 

  12. Feng, J.K., Cao, Y.L., Ai, X.P., and Yang, H.X., Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries, J. Power Sources, 2008, vol. 177, no. 1, p. 199.

    Article  CAS  Google Scholar 

  13. Su, C., Ye, Y., Xu, L., and Zhang, C., Synthesis and charge–discharge properties of a ferrocene-containing polytriphenylamine derivative as the cathode of a lithium ion battery, J. Mater. Chem., 2012, vol. 22, p. 22658.

    Article  CAS  Google Scholar 

  14. Luo, C., Huang, R., Kevorkyants, R., Pavanello, M., He, H., and Wang, C., Self-assembled organic nanowires for high power density lithium ion batteries, Nano Lett., 2014, vol. 14, p. 1596.

    Article  CAS  PubMed  Google Scholar 

  15. Su, C., Yang, F.L., Ji L., Xu, L. H., and Zhang, C., Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 20083.

    Article  CAS  Google Scholar 

  16. Su, C., Ji, L.L., Xu, L.H., Zhou, N.N., Wang, G.S., and Zhang, C., A polytriphenylamine derivative exhibiting a four-electron redox center as a high free radical density organic cathode, RSC Advances, 2016, vol. 6, p. 22989.

    Article  CAS  Google Scholar 

  17. Su, C., He, H., Xu, L., Zhao, K., Zheng, C., and Zhang, C., A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative:its preparation and electrochemical performance as a cathode material for Li-ion batteries, J. Mater. Chem. A. 2017, vol. 5, p. 2701.

    Google Scholar 

  18. Yamamoto, T., Nishiyama, M., and Koie, Y., Palladium-Catalyzed Synthesis of Triarylamines from Aryl Halides and Diarylamines, Tetrahedron Lett., 1998, vol. 39, p. 2367.

    Article  CAS  Google Scholar 

  19. Krestinin, A.V., Dremova, N.N., Knerelman, E.I., et al., Characterization of SWCNT-containing products made in Russia and perspectives of their industrial applications (in Russian), Rossiiskie Nanotekhnologii, 2015, vol. 10, no. 7–8, p. 26.

    Google Scholar 

  20. Zhou, Y.-k., He, B.-l., Zhou, W.-J., et al., Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites, Electrochim. Acta, 2004, vol. 49(2), p. 257.

    Google Scholar 

  21. Tkachenko, L.I., Nikolaeva, G.V., Ryabenko, A.G., and Efimov, O.N., One-Step Synthesis of the Polyaniline–Single-Walled Carbon Tubes Nanocomposite in Formic Acid and Its Electrochemical Properties, Prot. Metals Phys. Chem. Surf., 2018, vol. 54, no. 3, p. 1.

    Google Scholar 

  22. Pryor, W.A., Free Radicals, New York: Mcgraw-Hill, 1966.

    Google Scholar 

  23. Frejdlina, R.X., Vasilieva, E.I., Chukovskaya, E.I., and Anglin, B.A., Collection. Progress of Polymer Chemistry (in Russian), Moscow: Khimiya, 1966, p. 144.

    Google Scholar 

  24. Dan, A. and Sengupta, P.K., Synthesis and characterization of polyaniline prepared in formic acid medium, J. of Applied Polymer Science, 2004, vol. 91(2), p. 991.

    Google Scholar 

  25. Yue, J., Epstein, A.J., Zhong, Z., Gallagher, P.K., and MacDiarmid, A.G., Thermal Stabilities of Polyanilines, Synthetic Metals, 1991, vol. 41, p. 765.

    Article  CAS  Google Scholar 

  26. Kvarnstrom, C., Petr, A., Damlin, P., Lindfors, T., Ivaska, A., and Dunsch, L., Raman and FTIR spectroscopic characterization of electrochemically synthesized poly(triphenylamine), PTPA, Solid State Electrochem., 2002, vol. 6(8), p. 505.

    Book  Google Scholar 

  27. Szeghalmi, A.V., Erdmann, M., Engel, V., Schmitt, M., and Amthor, S., How delocalized is N,N,N′,N'-Tetraphenylphenylenediamine Radical Cation? An Experimental and Theoretical Study on the Electronic and Molecular Structure, J. Am. Chem. Soc., 2004, vol. 126, no. 25, p. 7834.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, M., Wang, K., Men, Z., Gao, S., Li, Z., and Sun, C., Determination of nonlinear absorption and refraction in direct and indirect band gap crystals by Z-scan method of aromatic hydrocarbons: Benzene, biphenyl and naphthalene, Spectrochim. Acta, Part A, 2012, vol. 97, p. 526.

    Article  CAS  Google Scholar 

  29. Kulikov, A.V., Komissarova, A.S., Ryabenko, A.G., Fokeeva, L.S., Shunina, I.G., and Belonogova, O.V., Effect of chain aggregation on the conductivity and ESR spectra of polyaniline, Russ. Chem. Bull., 2005, vol. 54, no. 12, p. 27–94.

    Article  CAS  Google Scholar 

  30. Konyushenko, E.N., Stejskal, J., and Trchova, M.A., Multiwall carbon nanotubes coated with polyaniline, Polymer, 2006, vol. 47, p. 5715.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Tkachenko.

Additional information

Original Russian Text © L.I. Tkachenko, G.V. Nikolaeva, A.G. Ryabenko, N.N. Dremova, I.K. Yakushchenko, E.I. Yudanova, O.N. Efimov, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 11, pp. 988–998.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, L.I., Nikolaeva, G.V., Ryabenko, A.G. et al. Electrochemical Properties of Nanocomposite Based on Polytriphenylamine Derivative and Single-Walled Carbon Nanotubes. Russ J Electrochem 54, 1222–1232 (2018). https://doi.org/10.1134/S1023193518130487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130487

Keywords

Navigation