Skip to main content
Log in

Simulation of Particle Scattering at Amorphous and Polycrystalline Targets

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. T. Robinson and I. M. Torrens, Phys. Rev. B 9 (12), 5008 (1974). https://doi.org/10.1103/PhysRevB.9.5008

    Article  Google Scholar 

  2. V. M. Kivilis, E. S. Parilis, and N. Yu. Turaev, Dokl. Akad. Nauk SSSR 173 (4), 805 (1967).

    Google Scholar 

  3. V. E. Yurasova, V. I. Shulga, and D. S. Karpuzov, Can. J. Phys. 46 (6), 759 (1968). https://doi.org/10.1139/p68-094

    Article  Google Scholar 

  4. E. S. Mashkova and V. A. Molchanov, Ions Scattering Application for Solids’ Analyzing (Energoatomizdat, Moscow, 1995) [in Russian].

    Google Scholar 

  5. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991).

    Book  Google Scholar 

  6. J. F. Ziegler and J. P. Biersack, SRIM. http://www.srim.org.

  7. http://www.oecd-nea.org/tools/abstract/detail/psr-0137.

  8. G. E. Thomas, L. J. Beckers, J. J. Vrakking, and B. R. Koning, J. Cryst. Growth 56 (3), 557 (1982). https://doi.org/10.1016/0022-0248(82)90039-2

    Article  Google Scholar 

  9. M. Hautala, Phys. Rev. B 30 (9), 5010 (1984). https://doi.org/10.1103/PhysRevB.30.5010

    Article  Google Scholar 

  10. I. Koponen and M. Hautala, Nucl. Instrum. Methods Phys. Res., Sect. B 33 (1–4), 112 (1988). https://doi.org/10.1016/0168-583X(88)90525-3

    Google Scholar 

  11. A. N. Zinoviev, Nucl. Instrum. Methods Phys. Res., Sect. B 269 (9), 829 (2011). https://doi.org/10.1016/j.nimb.2010.11.074

    Google Scholar 

  12. A. N. Zinoviev and K. Norlund, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 51 (2017). https://doi.org/10.1016/j.nimb.2017.03.047

    Google Scholar 

  13. P. Yu. Babenko, A. M. Deviatkov, D. S. Meluzova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 406, 538 (2017). https://doi.org/10.1016/j.nimb.2016.12.043

    Google Scholar 

  14. P. Yu. Babenko, A. N. Zinov’ev, and A. P. Shergin, JETP Lett. 101 (12), 840 (2015). https://doi.org/10.1134/S0021364015120024

    Article  Google Scholar 

  15. V. V. Bandurko, N. N. Koborov, V. A. Kurnaev, et al., J. Nucl. Mater. 176–177, 630 (1990). https://doi.org/10.1016/0022-3115(90)90118-7

    Article  Google Scholar 

  16. P. Yu. Babenko, A. N. Zinoviev, D. S. Meluzova, and A. P. Shergin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (3), 520 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Meluzova.

Additional information

Translating by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meluzova, D.S., Babenko, P.Y., Shergin, A.P. et al. Simulation of Particle Scattering at Amorphous and Polycrystalline Targets. J. Surf. Investig. 13, 335–338 (2019). https://doi.org/10.1134/S1027451019020332

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019020332

Keywords:

Navigation