Skip to main content
Log in

Structure, Morphology, Chemical Composition, and Optical Properties of Annealed Multilayer Ge/Al2O3 and Si/Ge/Si/Al2O3 Nanoperiodic Systems

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The properties of multilayer (up to 80 layers) nanoperiodic (period up to ~12 nm) Al2O3/Ge and Al2O3/Si/Ge/Si systems annealed in a nitrogen atmosphere at temperatures from 700 to 900°C are studied using transmission electron microscopy, X-ray techniques of photoelectron spectroscopy, diffractometry, and reflectometry, and optical methods of photoluminescence and Raman scattering. In Al2O3/Ge samples annealed at 700°C, the formation of Ge nanocrystals with a size of ~3 nm is detected, which disappear at 800–900°C, when nanocrystals of the Al6Ge5 semiconductor phase of large size (>100 nm) grow. The introduction of separating layers of Si (Al2O3/Si/Ge/Si) leads to the formation of nanocrystals of the SiGex alloy at a temperature of 800°C, above which the size of the crystallites of this phase is about ~3–4 nm. The data obtained using X-ray techniques are in good agreement with the results of high-resolution transmission electron microscopy and Raman spectroscopy. In the Al2O3/Ge samples, photoluminescence is observed at room temperature at ~2.1 eV, and in the Al2O3/Si/Ge/Si samples, there is an additional luminescence peak at ~1.4 eV. Hydrogenation of the samples by annealing in a hydrogen atmosphere at 500°C enhances the luminescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. M. S. Hybertsen, Phys. Rev. 72, 1514 (1994). https://www.doi.org/10.1103/physrevlett.72.1514

    ADS  CAS  Google Scholar 

  2. A. F. Zinovieva, V. A. Zinovyev, A. I. Nikiforov, V. A. Timofeev, A. V. Mudryi, A. V. Nenashev, and A. V. Dvurechenskii, JETP Lett. 104, 823 (2016). https://doi.org/10.1134/S0021364016240061

    Article  ADS  CAS  Google Scholar 

  3. S. Yamada, Y. Kurokawa, S. Miyajima, and M. Konagai, Jpn J. Appl. Phys. 52, 04CR02 (2013). https://www.doi.org/10.7567/JJAP.52.04CR02

    Article  Google Scholar 

  4. J. De Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002). https://www.doi.org/10.1109/TNANO.2002.1005428

    Article  ADS  Google Scholar 

  5. M. Fujii, S. Hayashi, K. Yamamoto, S. Takeoka, and K. Toshikiyo, Phys. Rev. B 61, 15988 (2000). https://www.doi.org/10.1103/PhysRevB.61.15988

    Article  ADS  Google Scholar 

  6. Y. Maeda, Phys. Rev. B 51, 1658 (1995). https://www.doi.org/10.1103/PhysRevB.51.1658

    Article  ADS  CAS  Google Scholar 

  7. M. Buljan, U. V. Desnica, M. Ivanda, N. Radic, P. Dubcek, G. Drazic, K. Salamon, S. Bernstorff, and V. Holy, Phys. Rev. B 79, 035310 (2009). https://www.doi.org/10.1103/PhysRevB.79.035310

    Article  ADS  Google Scholar 

  8. C. Dais, G. Mussler, H. Sigg, E. Muller, H. H. Solak, and D. Grutzmacher, J. Appl. Phys. 105, 122405 (2009). https://www.doi.org/10.1063/1.3117230

    Article  ADS  Google Scholar 

  9. M. O. Nestoklon, A. N. Poddubny, P. Voisin, and K. Dohnalova, J. Phys. Chem. C 120, 18901 (2016). https://www.doi.org/10.1021/acs.jpcc.6b05753

    Article  CAS  Google Scholar 

  10. M. Buljan, N. Radic, J. Sancho-Paramon, V. Janicki, J. Grenzer, I. Bogdanovic-Radovic, Z. Siketic, M. Ivanda, A. Utrobicic, R. Hubner, R. Weidauer, V. Vales, J. Endres, T. Car, M. Jercinovic, J. Rosko, S. Bernstorff, and V. Holy, Nanotechnology 26, 065602 (2015). https://www.doi.org/10.1088/0957-4484/26/6/065602

    Article  ADS  CAS  PubMed  Google Scholar 

  11. V. A. Gritsenko, Yu. N. Novikov, A. V. Shaposhnikov, and Yu. N. Morokov, Semiconductors 35, 997 (2001). https://www.doi.org/10.1134/1.1403563

    Article  ADS  CAS  Google Scholar 

  12. M. Buljan, M. Jercinovic, Z. Siketic, I. Bogdanovic-Radovic, MarionI. Delac, M. Kralj, M. Ivanda, A. Turkovic, G. Drazic, S. Bernstorff, and N. Radic, J. Appl. Cryst. 46, 1490 (2013). https://www.doi.org/10.1107/S002188981302164X

    Article  ADS  CAS  Google Scholar 

  13. M. V. Baidakova, N. A. Bert, V. Yu. Davydov, A. V. Ershov, A. A. Levin, A. N. Smirnov, L. A. Cokura, O. M. Sreseli, and I. N. Yassievich, Fiz. Tekh. Poluprovodn. 55, No. 10, 882 (2021). https://www.doi.org/10.21883/FTP.2021.10.51438.37

  14. A. V. Kudrin, V. P. Lesnikov, Yu. A. Danilov, M. V. Dorokhin, O. V. Vikhrova, P. B. Demina, D. A. Pavlov, Yu. V. Usov, V. E. Milin, Yu. M. Kuznetsov, R. N. Kryukov, A. A. Konakov, and N. Yu. Tabachkova, Semicond. Sci. Tech. 35, 125032 (2020). https://www.doi.org/10.1088/1361-6641/abbd5c

  15. V. P. Lesnikov, M. V. Ved’, O. V. Vikhrova, Yu. A. Danilov, B. N. Zvonkov, A. V. Zdoroveishchev, I. L. Kalent’eva, A. V. Kudrin, and R. N. Kryukov, Phys. Solid State 63, 1028 (2021). https://doi.org/10.1134/S1063783421070131

    Article  ADS  CAS  Google Scholar 

  16. A. Mikhaylov, A. Belov, D. Korolev, I. Antonov, V. Kotomina, A. Kotina, E. Gryaznov, A. Sharapov, M. Koryazhkina, R. Kryukov, S. Zubkov, A. Sushkov, D. Pavlov, S. Tikhov, O. Morozov, and D. Tetelbaum, Adv. Mater. Technol. 5, 1900607 (2019). https://www.doi.org/10.1002/admt.201900607

  17. M. N. Koryazhkina, D. O. Filatov, S. V. Tikhov, A. I. Belov, D. S. Korolev, A. V. Kruglov, R. N. Kryukov, S. Yu. Zubkov, V. A. Vorontsov, D. A. Pavlov, D. I. Tetelbaum, A. N. Mikhaylov, S. A. Shchanikov, S. Kim, and B. Spagnolo, J. Low Power Electron. Appl. 12, 14 (2022). https://www.doi.org/10.3390/jlpea12010014

    Article  Google Scholar 

  18. A. V. Boryakov, S. I. Surodin, R. N. Kryukov, D. E. Nikolichev, and S. Yu. Zubkov, J. Electron Spectrosc. Relat. Phenom. 229, 132 (2018). https://www.doi.org/10.1016/j.elspec.2017.11.004

    Article  CAS  Google Scholar 

  19. P. Scherrer, Nachr. Ges. Wiss. Gottingen 26, 98 (1918). Nachr. Ges. Wiss. Göttingen 26, 98 (1918).

  20. L. G. Parrat, Phys. Rev. 95, 359 (1954). https://doi.org/10.1103/PhysRev.95.359

    Article  ADS  Google Scholar 

  21. R. Esmilaire, M. Beaudhuin, P. Hermet, Nicole. Frety, D. Ravot, and R. Viennois, Mater. Lett. 138, 222 (2015). https://www.doi.org/10.1016/j.matlet.2014.10.001

    Article  CAS  Google Scholar 

  22. D. E. Nikolichev, A. V. Boryakov, S. Yu. Zubkov, M. V. Dorokhin, A. V. Kudrin, A. V. Zdoroveishchev, M. N. Drozdov, and S. I. Surodin, Fiz. Tverd. Tela: Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo 1, 48 (2013).

    Google Scholar 

  23. M. Matsui, H. Murakami, T. Fujioka, A. Ohta, S. Higashi, and S. Miyazaki, Microelectron. Eng. 88, 1549 (2011). https://www.doi.org/10.1016/j.mee.2011.03.032

    Article  CAS  Google Scholar 

  24. A. Ohta, T. Fujioka, H. Mukarami, S. Higashi, and S. Miyazaki, Jpn. J. Appl. Phys. 50, 10PE01 (2011). https://www.doi.org/10.1143/JJAP.50.10PE01

    Article  Google Scholar 

  25. H. E. Swanson and R. Tatge, Natl. Bur. Stand. (U.S.) 1, 18 (1953).

    Google Scholar 

  26. R. Vincent and D. R. Exelby, Acta Crystallogr., A 51, 801 (1995). https://doi.org/10.1107/S0108767395006404

    Article  ADS  Google Scholar 

  27. H. E. Swanson and R. K. Fuyat, Natl. Bur. Stand. (U.S.) 2, 6 (1953).

    Google Scholar 

  28. T. G. Fawcett, S. N. Kabekkodu, J. R. Blanton, and T. N. Blanton, Powder Diffr. 32, 63 (2017). https://doi.org/10.1017/S0885715617000288

    Article  ADS  CAS  Google Scholar 

  29. R. Viennois, R. Esmilaire, L. Perriere, A. Haidoux, E. Alleno, and M. Beaudhuin, Inorg. Chem. 56, 11591 (2017). https://www.doi.org/10.1021/acs.inorgchem.7b01318

    Article  CAS  PubMed  Google Scholar 

  30. L. A. Sokura, V. N. Nevedomskiy, M. V. Baidakova, A. A. Levin, A. V. Belolipetsky, I. N. Yassievich, A. V. Ershov, and N. A. Bert, J. Phys.: Conf. Ser. 1697, 012135 (2020).

    CAS  Google Scholar 

  31. DIFFRAC plus Leptos 5 User Manual (Bruker AXS, Karlsruhe, 2007).

  32. V. A. Gaisler, O. A. Kuznetsov, I. G. Neizvestnyi, L. K. Orlov, M. P. Sinyukov, and A. B. Talochkin, Fiz. Tverd. Tela 31, (11), 292 (1989).

    CAS  Google Scholar 

  33. E. B. Gorokhov, V. A. Volodin, D. V. Marin, D. A. Orekhov, A. G. Cherkov, A. K. Gutakovskii, V. A. Shvets, A. G. Borisov, and M. D. Efremov, Semiconductors 39, 1168 (2005). https://www.doi.org/10.1134/1.2085265

    Article  ADS  CAS  Google Scholar 

  34. Y. Oniki, H. Koumo, Y. Iwazaki, and T. Ueno, J. Appl. Phys. 107, 124113 (2010). https://www.doi.org/10.1063/1.3452367

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. A. V. Ershov, D. I. Tetelbaum, I. A. Chugrov, A. I. Mashin, A. N. Mikhaylov, A. V. Nezhdanov, A. A. Ershov, and I. A. Karabanova, Semiconductors 45, 731 (2011). https://www.doi.org/10.1134/S1063782611060108

    Article  ADS  CAS  Google Scholar 

  36. E. Tugay, S. Ilday, R. Turan, and T. G. Finstad, J. Lumin. 155, 170 (2014). https://www.doi.org/10.1016/j.jlumin.2014.06.012

    Article  CAS  Google Scholar 

  37. A. Nayak and S. Bhuni, J. Exp. Nanosci. 9, 463 (2014). https://www.doi.org/10.1080/17458080.2012.669852

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.V. Baidus, A.I. Belov, O.S. Molostova, and I.V. Samartsev (Lobachevsky State University of Nizhny Novgorod) for methodological assistance in heat treatments of the samples and in the PL measurements.

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation as part of Strategic Academic Leadership Program “Priority-2030.”

The study was carried out using equipment of the Center for Collective Use “Materials Science and Diagnostics in Advanced Technologies” of the Ioffe Physical—Technical Institute, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Ershov or A. A. Levin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, A.V., Levin, A.A., Baidakova, M.V. et al. Structure, Morphology, Chemical Composition, and Optical Properties of Annealed Multilayer Ge/Al2O3 and Si/Ge/Si/Al2O3 Nanoperiodic Systems. J. Surf. Investig. 17 (Suppl 1), S378–S390 (2023). https://doi.org/10.1134/S102745102307011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102307011X

Keywords:

Navigation