Skip to main content
Log in

An Impact of Atmospheric and Climate Changes on the Energy Potential of Russian Forest Resources

  • POWER ENGINEERING
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

Biofuels are an important source of energy that currently cover about 10% of the world’s energy demand, including 2% of electricity generation and 2.5% of liquid fuel consumption. In Russia, wood fuel is among the most available and abundant sources of renewable energy. Possible changes in the energy potential of Russia’s forest resources induced by changes in the atmospheric composition and climate are studied. This article presents estimates of global changes in the CO2 concentration and the average annual air temperature across the Russian territory for the period up to 2050 obtained using the climatic model and the carbon cycle model developed at the Moscow Power Engineering Institute. The results of our simulations obtained show that the change in the net primary production of Russian forests caused by the growth in the CO2 content in the atmosphere, the increase of temperature, and the larger amount of precipitation will rinduce an increase of the available wood fuel energy resources by 30% or by more than 9 million tce/year by the middle of the current century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. B. Levin, V. S. Sukhanov, and D. V. Sheremet’ev, Lesnoi Vestnik, No. 4, 37–42 (2010) [in Russian].

    Google Scholar 

  2. F. Kraxner, S. Leduc, S. Fuss, D. G. Shchepachenko, and A. Z. Shvidenko, Sibirskii Lesnoi Zhurnal, No. 1, 16–25 (2018).

    Google Scholar 

  3. L. Gustavsson, S. Haus, M. Lundblad, A. Lundström, C. A. Ortiz, R. Sathre, N. Le Truong, and P.-E. Wikberg, Renewable and Sustainable Energy Reviews 67, 612–624 (2017).

    Article  Google Scholar 

  4. J. Giuntoli, A. Agostini, S. Caserini, E. Lugato, D. Baxter, and L. Marelli, Biomass and Bioenergy 89, 146–158 (2016).

    Article  Google Scholar 

  5. D. Zamolodchikov and G. Kraev, Ustoichivoe Lesopol’zovanie, No. 4, 23–31 (2016) [in Russian].

    Google Scholar 

  6. I. V. Kolesnikov, V. M. Velishchanskii, B. D. Litvinenko, M. M. Lokshin, N. S. Nekrasov, V. M. Akimov, and M. D. Giryaev, Forest Management in the Russian Federation in 1946–1992 (Rosleskhoz, Moscow, 1996) [in Russian].

    Google Scholar 

  7. The Russian Federation Forest Sector Outlook Study to 2030, Ed. by A. Petrov and M. Lobovikov (FAO, Rome, 2012).

    Google Scholar 

  8. K. I. Kobak, Carbon Cycle Biotic Components (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  9. Climate Change2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R. K. Pachauri and L. A. Meyer (IPCC, Geneva, Switzerland).

  10. S. Schaphoff, C. P. O. Reyera, D. Schepaschenko, D. Gertena, and A. Shvidenko, Forest Ecology and Management 361, 432–444 (2016).

    Article  Google Scholar 

  11. A. V. Klimenko, V. V. Klimenko, M. V. Fyodorov, and S. Yu. Snytin, in Proc. of the 5th International Energy Conference, Seoul, Korea,1993, Vol. 5, pp. 56–61.

  12. V. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, Doklady Physics 61 (6), 301–304 (2016).

    Article  ADS  Google Scholar 

  13. V. V. Klimenko, A. Klimenko, and A. G. Tereshin, Izvestiya, Atmospheric and Oceanic Physics 51 (2), 138–147 (2015).

    Article  ADS  Google Scholar 

  14. V. V. Klimenko, O. V. Mikushina, and A. G. Tereshin, in Proc. SPIE 10466, 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics,2017. https://doi.org/10.1117/12.2287753

  15. V. V. Klimenko, E. V. Fedotova, and A. G. Tereshin, Energy 142, 1010–1022 (2018). https://doi.org/10.1016/j.energy.2017.10.069

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used data of the Russian Federal State Statistics Service (Rosstat, www//gks.ru), the All-Russia Research Institute of Hydrometeorological Information of the Russian Meteorological Service (RIHMI-WDC, www//meteo.ru), the Food and Agriculture Organization of the United Nations (FAO, www//faostat.org), the International Energy Agency (IEA, www.iea.org), the British Petroleum Company (www//bp.org), and the National Oceanic and Atmospheric Administration (NOAA, www//noaa.gov).

Funding

This work was supported by the Ministry of the Rus-sian   Federation for Education and Science (project no. 13.1137.2017) regarding the modeling the climatic changes across the Russian territory, and by the Russian Foundation for Basic Research (grant no. 17-08-00134) regarding the estimating the potential of energy bioresources in Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Klimenko.

Additional information

Translated by V. Filatov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Tereshin, A.G. & Mikushina, O.V. An Impact of Atmospheric and Climate Changes on the Energy Potential of Russian Forest Resources. Dokl. Phys. 64, 401–407 (2019). https://doi.org/10.1134/S1028335819100069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335819100069

Navigation