Skip to main content
Log in

Quantum filtering for multiple input multiple output systems driven by arbitrary zero-mean jointly Gaussian input fields

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we treat the quantum filtering problem for multiple input multiple output (MIMO) Markovian open quantum systems coupled to multiple boson fields in an arbitrary zero-mean jointly Gaussian state, using the reference probability approach formulated by Bouten and van Handel as a quantum version of a well-known method of the same name from classical nonlinear filtering theory, and exploiting the generalized Araki-Woods representation of Gough. This includes Gaussian field states such as vacuum, squeezed vacuum, thermal, and squeezed thermal states as special cases. The contribution is a derivation of the general quantum filtering equation (or stochastic master equation as they are known in the quantum optics community) in the full MIMO setup for any zero-mean jointly Gaussian input field states, up to some mild rank assumptions on certain matrices relating to the measurement vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Belavkin, Optimal Measurement and Control in Quantum Dynamical Systems (Institute of Physics, Nicolaus Copernicus University, Torun, preprint 411, 1979).

    Google Scholar 

  2. V. Belavkin, “On the Theory of Controlling Observable Quantum Systems,” Automation and Remote Control 44(2), 178–188 (1983).

    MATH  MathSciNet  Google Scholar 

  3. V. Belavkin, “Quantum Stochastic Calculus and Quantum Nonlinear Filtering,” J. Multivariate Anal. 42, 171–201 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. V. Belavkin, “Quantum Continual Measurements and A Posteriori Collapse On CCR,” Commun. Math. Phys. 146, 611–635 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. J. Dailbard, Y. Castin, and K. Mølmer, “Wave-Function Approach to Dissipative Processes in Quantum Optics,” Phys. Rev. Lett. 68(5), 580–583 (1992).

    Article  ADS  Google Scholar 

  6. R. Dum, P. Zoller, and H. Ritsch, “Monte Carlo Simulation of the Atomic Master Equation for Spontaneous Emission,” Phys. Rev. A 45(7), 4879–4887 (1992).

    Article  ADS  Google Scholar 

  7. H. J. Carmichael, “Quantum Trajectory Theory for Cascaded Open Systems,” Phys. Rev. Lett. 70, 2273–2276 (1993).

    Article  ADS  Google Scholar 

  8. H. Carmichael, An Open Systems Approach to Quantum Optics (Berlin: Springer, 1993).

    MATH  Google Scholar 

  9. L. Bouten, Filtering and Control in Quantum Optics (Ph.D. dissertation, Catholic University of Nijmegen, 2004).

    Google Scholar 

  10. J. Gough and C. Kostler, “Quantum Filtering in Coherent States,” Communications on Stochastic Analysis 4(4), 505–521 (2010).

    MathSciNet  Google Scholar 

  11. J. E. Gough, M. R. James, and H. I. Nurdin, “Quantum Filtering for Systems Driven by Fields in Single Photon States and Superposition of Coherent States Using Nonmarkovian Embeddings,” Quantum Inf Process 12, 1469–1499 (2013).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. J. Gough, M. R. James, H. I. Nurdin, and J. Combes, “Quantum Filtering for Systems Driven by Fields in Single-Photon States or Superposition of Coherent States,” Phys. Rev. A 86, pp. 043819 (2012).

    Article  ADS  Google Scholar 

  13. H. Song, G. Zhang, and Z. Xi, Multi-Photon Filtering (arXiv preprint arXiv:1307.7367, 2013).

    Google Scholar 

  14. J. E. Gough, M. R. James, and H. I. Nurdin, Quantum Trajectories for a Class of Continuous Matrix Product Input States New J. Phys. 16, 075008 (2014).

    Google Scholar 

  15. M. G. Genoni, S. Mancini, and A. Serafini, General-Dyne Unravelling of a Thermal Master Equation (arXiv preprint arXiv:1405:3565v1, 2014).

    Google Scholar 

  16. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2010).

    MATH  Google Scholar 

  17. A. Chia and H. M. Wiseman, “Quantum Theory of Multiple-Input-Multiple-Output Markovian Feedback With Diffusive Measurements,” Phys. Rev. A 84, 012120 (2011).

    Article  ADS  Google Scholar 

  18. J. E. Gough, M. R. James, and H. I. Nurdin, “Squeezing Components in Linear Quantum Feedback Networks,” Phys. Rev. A 81, 023 804-1–023804-15 (2010).

    Article  Google Scholar 

  19. R. L. Hudson and K. R. Parthasarathy, “Quantum Ito’s Formula and Stochastic Evolution,” Commun. Math. Phys. 93, 301–323 (1984).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. K. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Berlin: Birkhauser, 1992).

    Book  MATH  Google Scholar 

  21. P. A. Meyer, Quantum Probability for Probabilists (2nd ed. Berlin-Heidelberg: Springer-Verlag, 1995).

    MATH  Google Scholar 

  22. J. Gough, “Quantum White Noise and the Master Equation for Gaussian Reference States,” Russ. Journ. Math. Phys. 10(2), 142–148 (2003).

    ADS  MATH  MathSciNet  Google Scholar 

  23. H. Hellmich, R. Honegger, C. Köstler, B. Kümmerer, and A. Rieckers, “Couplings to Classical and Non-Classical Squeezed White Noise as Stationary Markov Processes,” Publ. RIMS, Kyoto Univ. 38, 1–31 (2002).

    Article  MATH  Google Scholar 

  24. L. Bouten and R. van Handel, Quantum Filtering: A Reference Probability Approach (arXiv preprint arXiv:math-ph/0508006v4, 2006).

    Google Scholar 

  25. L. Bouten and R. van Handel, “On the Separation Principle of Quantum Control,” in Quantum Stochastics and Information: Statistics, Filtering and Control (University of Nottingham, UK, 15–22 July 2006), V. P. Belavkin and M. Guta, Eds. Singapore: World Scientific, 206–238 (2008).

    Google Scholar 

  26. L. Bouten, R. van Handel, and M. R. James, “An Introduction to Quantum Filtering,” SIAM J. Control Optim. 46, 2199–2241 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  27. H. I. Nurdin, “Network Synthesis of Mixed Quantum-Classical Linear Stochastic Systems,” in Proceedings of the 2011 Australian Control Conference (AUCC). Engineers Australia, 68–75 (2011).

    Google Scholar 

  28. S. Wang, H. I. Nurdin, G. Zhang, and M. R. James, Network Synthesis for a Class of Mixed Quantum-Classical Linear Stochastic Systems (arXiv preprint arXiv:1403.6928v2).

  29. J. Gough and M. R. James, “The Series Product and Its Application to Quantum Feedforward and Feedback Networks,” IEEE Trans. Automat. Contr. 54(11), 2530–2544 (2009).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. I. Nurdin.

Additional information

Dedicated to the memory of Slava Belavkin

Research supported by the Australian Research Council

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurdin, H.I. Quantum filtering for multiple input multiple output systems driven by arbitrary zero-mean jointly Gaussian input fields. Russ. J. Math. Phys. 21, 386–398 (2014). https://doi.org/10.1134/S106192081403011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106192081403011X

Keywords

Navigation