Skip to main content
Log in

Electrochemical Sensors Based on Copper–Cadmium Bimetallic Porphyrin Coordination Polymers with Various Cu/Cd Ratios

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Bimetallic porphyrin coordination polymers with various Cu/Cd ratios (CuCd) were synthesized and characterized by X-ray diffraction, infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and transmission electron microscopy. The presence of Cu(II) in the series of bimetallic porphyrin coordination polymers makes them electrochemically active, consequently, they can be used in electrochemical sensing of hydrogen peroxide and sodium nitrite. Their sensing performance was investigated by cyclic voltammetry and chronoamperometry. The performance was affected by Cu/Cd ratio of Cu–Cd, and the optimal Cu–Cd-2 (with Cu/Cd ratio of 1.59) showed the best performance: the detection sensitivities for H2O2 and NaNO2 were 414 and 418 mA/(M cm2), respectively, and detection limits were 2.7 and 3 μM (S/N = 3). These results demonstrate that Cu−Cd offers great prospect for the construction of non-enzymatic sensors for hydrogen peroxide or sodium nitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yaghi, O.M., Li, G., and Li, H., Nature, 1995, vol. 378, no. 6558, p. 703.

    Article  CAS  Google Scholar 

  2. Li, J.R., Kuppler, R.J., and Zhou, H.C., Chem. Soc. Rev., 2009, vol. 38, no. 5, p. 1477.

    Article  CAS  Google Scholar 

  3. Aktay, J., Gascon, U., Hernandez-Alonso, M.D., van Klink, G.P.M., and Kapteijn, F., J. Catal., 2009, vol. 261, no. 1, p. 75.

    Article  Google Scholar 

  4. Wang, L., Teng, Q., Sun, X., Chen, Y., Wang, Y., Wang, H., and Zhang, Y., J. Colloid Interface Sci., 2018, vol. 512, p. 127.

    Article  CAS  Google Scholar 

  5. Hu, J.M., Blatov, V.A., Van Hecke, K., and Cui, G.H., Dalton Trans., 2016, vol. 45, no. 6, p. 2426.

    Article  CAS  Google Scholar 

  6. Lvova, L., Yaroshenko, I., Kirsanov, D., Paolesse, R., and Legin, A., Sensors, 2018, vol. 18, no. 8, p. 2584.

    Article  Google Scholar 

  7. Tesakova, M.V., Semeikin, A.S., and Parfenyuk, V.I., J. Porphyrins Phthalocyanines, 2016, vol. 20, no. 7, p. 793.

    Article  CAS  Google Scholar 

  8. Zha, Q., Rui, X., Wei, T., and Xie, Y., CrystEngComm, 2014, vol. 16, no. 32, p. 7371.

    Article  CAS  Google Scholar 

  9. Wang, C.Y., Cui, G.Y., Ding, D., and Zhou, B., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 292, no. 1, p. 012107.

  10. Suslick, K.S., Bhyrappa, P., Chou, J.H., Kosal, M.E., Nakagaki, S., Smithenry, D.W., and Wilson, S.R., Cheminform, 2010, vol. 36, no. 34, p. 283.

    Google Scholar 

  11. Huh, S., Kim, S.J., and Kim, Y., CrystEngComm, 2016, vol. 18, no. 3, p. 345.

    Article  CAS  Google Scholar 

  12. Sharma, C.V.K., Broker, G.A., Huddleston, J.G., Baldwin, J.W., And, R.M.M., and Rogers, R.D., J. Am. Chem. Soc., 2012, vol. 121, no. 6, p. 1137.

    Article  Google Scholar 

  13. Zhang, Y., Nsabimana, A., Zhu, L., Bo, X., Han, C., Li, M., and Guo, L., Talanta, 2014, vol. 129, p. 55.

    Article  Google Scholar 

  14. Smythe, N.C., Butler, D.P., Moore, C.E., Mcgowan, W.R., Rheingold, A.L., and Beauvais, L.G., Dalton Trans., 2012, vol. 41, no. 26, p. 7855.

    Article  CAS  Google Scholar 

  15. Zhang, Z., Zhang, L., Wojtas, L., Nugent, P., Eddaoudi, M., and Zaworotko, M.J., J. Am. Chem. Soc., 2012, vol. 134, no. 2, p. 924.

    Article  CAS  Google Scholar 

  16. Lin, M.S. and Leu, H.J., A Electroanalysis, 2005, vol. 17, no. 22, p. 2068.

    Article  CAS  Google Scholar 

  17. Ojani, R., Raoof, J., and Zarei, E., Electrochim. Acta, 2006, vol. 52, no. 3, p. 753.

    Article  CAS  Google Scholar 

  18. Kumar, A., Maji, S., Dubey, P., Abhilash, G. J., Pandey, S., and Sarkar, S., Tetrahedron Lett., 2007, vol. 48, no. 41, p. 7287.

    Article  CAS  Google Scholar 

  19. Qin, L.L. and Yan, Y., Guangdong Chem. Ind., 2013, vol. 9, p. 21.

    Google Scholar 

  20. Jenniefer, S.J. and Muthiah, P.T., Chem. Cent. J., 2013, vol. 7, no. 1, p. 35.

    Article  Google Scholar 

  21. Deacon, G.B. and Phillips, R., Coord. Chem. Rev., 1980, vol. 33, no. 3, p. 227.

    Article  CAS  Google Scholar 

  22. Huang, G., Wang, W.L., Ning, X.X., Liu, Y., Zhao, S.K., Guo, Y.A., Wei, S.J., and Zhou, H., Ind. Eng. Chem. Res., 2016, vol. 55, no. 11, p. 2959.

    Article  CAS  Google Scholar 

  23. Gligor, D. and Walcarius, A., J. Solid State Electrochem., 2014, vol. 18, no. 19, p. 1519.

    Article  CAS  Google Scholar 

  24. Zhou, B., Liang, L.M., and Yao, J., J. Solid State Chem., 2015, vol. 223, p. 152.

    Article  CAS  Google Scholar 

  25. Kaur, B., Srivastava, R., and Satpati, B., Catal. Sci. Technol., 2016, vol. 6, no. 4, p. 1134.

    Article  CAS  Google Scholar 

  26. Wang, F., Kalam, A., Chang, L., Xie, D., Al-Shihri, A.S., and Du, G., Mater. Lett., 2013, vol. 92, no. 2, p. 96.

    Article  CAS  Google Scholar 

  27. Zhang, P., Guo, D., and Li, Q., Mater. Lett., 2014, vol. 125, no. 24, p. 202.

    Article  CAS  Google Scholar 

  28. Wang, M., Jiang, X., Liu, J., Guo, H., and Liu, C., Electrochim. Acta, 2015, vol. 182, p. 613.

    Article  CAS  Google Scholar 

  29. Janyasupab, M., Liu, C.W., Zhang, Y., Wang, K.W., and Liu, C.C., Sens. Actuators, B, 2013, vol. 179, no. 4, p. 209.

    Article  CAS  Google Scholar 

  30. Nikolaev, K.G., Maybeck, V., Neumann, E., Ermako, S.S., Ermolenko, Y.E., and Mourzina, Y.G., J. Solid State Electrochem., 2018, vol. 22, no. 4, p. 1023.

    Article  CAS  Google Scholar 

  31. Wu, H., Fan, S., Jin, X., Zhang, H., Chen, H., Dai, Z., and Zou, X., Anal. Chem., 2014, vol. 86, no. 13, p. 6285.

    Article  CAS  Google Scholar 

  32. Jiang, J., Fan, W., and Du, X., Biosens. Bioelectron., 2014, vol. 51, no. 2, p. 343.

    Article  CAS  Google Scholar 

  33. Li, S.J., Zhao, G.X., Zhang, R.X., Hou, Y.L., Liu, L., and Pang, H., Microchim. Acta, 2013, vol. 180, no. 9, p. 821.

    Article  CAS  Google Scholar 

  34. Afkhami, A., Soltani-Felehgari, F., Madrakian, T., and Ghaedi, H., Biosens. Bioelectron., 2014, vol. 51, no. 1, p. 379.

    Article  CAS  Google Scholar 

  35. Yang, B., Duan, B., Wang, H., Zhu, M., Yang, P., and Du, Y., Colloids Surf., A, 2015, vol. 481, p. 43.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful the financial support of National Natural Science Foundation of China (Grant no. 21175068) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ding, D., Jiang, X. et al. Electrochemical Sensors Based on Copper–Cadmium Bimetallic Porphyrin Coordination Polymers with Various Cu/Cd Ratios. J Anal Chem 76, 772–778 (2021). https://doi.org/10.1134/S1061934821060137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821060137

Keywords:

Navigation