Skip to main content
Log in

Effect of solid-solution softening of crystalline materials: Review

  • Real Structure of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

What is weakened, reinforces. Softness over comes hardness.

Dao de tszin, XXXVI

Abstract

The phenomenon of softening of crystalline materials by alloying, which is promising for controlling mechanical properties of materials, is due to the occurrence of an additional channel of facilitated formation of dislocation kinks at impurity centers. This effect is related to the kink mechanism of dislocation motion. Hence, a range of materials that are capable of softening can be singled out: metals with a bcc structure, semiconductors, ceramic materials, intermetallic compounds, etc. A unified basis for description of softening regularities is given by the phenomenological theory. This theory predicts many properties that are general for all materials under consideration: the range of strength characteristics of impurities capable of softening crystals, limiting possibilities of softening at the optimal choice of the components, etc. The theory, supplemented with the knowledge of some material constants (determined from microscopic calculations or, even better, from experiment), makes it possible to calculate the temperature and concentration dependences of the yield stress and other parameters measured in mechanical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pink and R. J. Arsenault, Prog. Mater. Sci. 24, 1 (1979).

    Article  Google Scholar 

  2. L. P. Kubin and F. Louchet, Acta Metall. 27, 337 (1979).

    Article  Google Scholar 

  3. L. P. Kubin, F. Louchet, J. P. Peyrade, et al., Acta Metall. 27, 343 (1979).

    Article  Google Scholar 

  4. Y. T. Chen, D. G. Atteridge, and W. W. Gerberich, Acta Metall. 29, 1171 (1981).

    Article  Google Scholar 

  5. P. Chomel and J. P. Cottu, Acta Metall. 30, 1481 (1982).

    Article  Google Scholar 

  6. G. S. Murty, J. Mater. Sci. 21, 211 (1986).

    Article  Google Scholar 

  7. W. J. Botta, J. W. Christian, and G. Taylor, Philos. Mag. A 57, 703 (1988).

    Google Scholar 

  8. K. Okazaki, J. Mater. Sci. 31, 1087 (1996).

    Article  Google Scholar 

  9. D. Brunner and J. Diehl, Mater. Sci. Eng., A 164(1–2), 350 (1993).

    Google Scholar 

  10. J. R. Patel and A. R. Chaudhuri, Phys. Rev. 143, 601 (1966).

    Article  ADS  Google Scholar 

  11. H. Alexander, in Dislocations in Solids, Ed. by F. R. N. Nabarro (North-Holland, Amsterdam, 1986), Vol. 7, Chap. 35, p. 113.

    Google Scholar 

  12. S. Sriram, V. K. Vasudevan, and D. M. Dimiduk, Mater. Sci. Eng., A 192–193, 217 (1997).

    Google Scholar 

  13. H. Inui, K. Ishikawa, and M. Yamaguchi, Intermetallics 9, 119 (2000).

    Google Scholar 

  14. T. E. Mitchell, P. M. Anderson, M. I. Baskes, et al., Philos. Mag. 83, 1329 (2003).

    Article  Google Scholar 

  15. V. P. Soldatov, V. D. Natsik, A. N. Diulin, and G. I. Kirichenko, Fiz. Nizk. Temp. (Kiev) 26, 214 (2000).

    Google Scholar 

  16. T. Kataoka and T. Uematsu, Jpn. J. Appl. Phys. 17, 271 (1978).

    Article  Google Scholar 

  17. J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  18. E. Nadgorny, Prog. Mater. Sci. 31, 1 (1988).

    Article  Google Scholar 

  19. D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Pergamon, New York, 2003).

    Google Scholar 

  20. T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Springer, Berlin, 1991).

    Google Scholar 

  21. Yu. A. Osip’yan, S. I. Bredikhin, V. V. Kveder, N. V. Klassen, V. D. Negriĭ, V. F. Petrenko, I. S. Smirnova, S. A. Shevchenko, S. Z. Shmurak, and É. A. Shteĭman, Électronic Properties of Dislocations in Semiconductors (Éditorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  22. N. N. Gorobeĭ, Fiz. Tverd. Tela (Leningrad) 28, 2252 (1986) [Sov. Phys. Solid State 28, 1264 (1986)].

    Google Scholar 

  23. N. I. Medvedeva, Yu. N. Gornostyrev, and A. J. Freeman, Phys. Rev. Lett. 94, 136402 (2005).

    Google Scholar 

  24. O. V. Klyavin, N. P. Likhodedov, and A. N. Orlov, Fiz. Tverd. Tela (Leningrad) 28, 156 (1986) [Sov. Phys. Solid State 28, 84 (1986)].

    Google Scholar 

  25. M. Heggie, R. Jones, and A. Umerskii, Philos. Mag. A 63, 571 (1991).

    Google Scholar 

  26. K. Masuda-Jindo, Phys. Status Solidi B 129, 595 (1985).

    Google Scholar 

  27. M. Wen, S. Fukuyama, and K. Yokogawa, Acta Mater. 51, 1767 (2003).

    Article  Google Scholar 

  28. P. Guyot and J. E. Dorn, Can. J. Phys. 45, 983 (1967).

    Google Scholar 

  29. B. V. Petukhov and V. L. Pokrovskiĭ, Zh. Éksp. Teor. Fiz. 63, 634 (1972) [Sov. Phys. JETP 36, 336 (1972)].

    Google Scholar 

  30. F. Ackerman, H. Mughrabi, and A. Seeger, Acta Metall. 31, 1353 (1983).

    Article  Google Scholar 

  31. T. Suzuki and S. Takeuchi, in Crystal Lattice Defects and Dislocation Dynamics, Ed. by R. Vardanian (Nova Science Publishers, New York, 2000), p. 1.

    Google Scholar 

  32. J. Weertman, J. Appl. Phys. 29, 1685 (1958).

    Article  Google Scholar 

  33. B. V. Petukhov, Fiz. Tverd. Tela (Leningrad) 13, 1445 (1971) [Sov. Phys. Solid State 13, 1204 (1971)].

    Google Scholar 

  34. A. Sato and M. Meshii, Acta Metall. 21, 753 (1973).

    Article  Google Scholar 

  35. B. V. Petukhov, Fiz. Met. Metalloved. 56, 1177 (1983).

    Google Scholar 

  36. V. L. Indenbom and V. M. Chernov, in Elastic Strain Fields and Dislocation Mobility, Ed. by V. L. Indenbom and J. Lothe (Elsevier, Amsterdam, 1992), p. 517.

    Google Scholar 

  37. B. V. Petukhov, M. Bartsch, and U. Messerschmidt, Eur. Phys. J.: Appl. Phys. 9, 89 (2000).

    Article  ADS  Google Scholar 

  38. B. V. Petukhov and Yu. I. Polyakov, Kristallografiya 38, 4 (1993) [Crystallogr. Rep. 38, 1 (1993)].

    Google Scholar 

  39. B. V. Petukhov, Fiz. Tverd. Tela (Leningrad) 25, 1822 (1983) [Sov. Phys. Solid State 25, 1048 (1983)].

    Google Scholar 

  40. B. V. Petukhov, Phys. Status Solidi A 90, 225 (1985).

    Article  Google Scholar 

  41. H. Suzuki, in Dislocations in Solids, Ed. by F. R. N. Nabarro (North-Holland, Amsterdam, 1979), Vol. 2, p. 965.

    Google Scholar 

  42. B. V. Petukhov, Fiz. Tverd. Tela (St. Petersburg) 35, 1121 (1993) [Phys. Solid State 35, 571 (1993)].

    Google Scholar 

  43. B. V. Petukhov, Kristallografiya 44(4), 699 (1999) [Crystallogr. Rep. 44, 620 (1999)].

    Google Scholar 

  44. K. Kitajima, Y. Aono, H. Abe, and E. Kuramoto, in Proceedings of the International Conference on the Strength of Metals and Alloys, ICSMA-5 (Pergamon, Amsterdam, 1980), Vol. 2, p. 965.

    Google Scholar 

  45. N. Maeda, K. Kimura, and S. Takeuchi, Izv. Akad. Nauk SSSR, Ser. Fiz. 51, 729 (1987).

    Google Scholar 

  46. C. Levade and G. Vanderschaeve, J. Cryst. Growth 197, 565 (1999).

    Article  Google Scholar 

  47. D. R. Trinkle and C. Woodward, Science 310, 1665 (2005).

    Article  ADS  Google Scholar 

  48. D. C. Chrzan, Science 310, 1623 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the 50th Anniversary of the Journal

Original Russian Text © B.V. Petukhov, 2007, published in Kristallografiya, 2007, Vol. 52, No. 1, pp. 113–124.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petukhov, B.V. Effect of solid-solution softening of crystalline materials: Review. Crystallogr. Rep. 52, 112–122 (2007). https://doi.org/10.1134/S1063774507010130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774507010130

PACS numbers

Navigation