Skip to main content
Log in

Multilevel relaxation model for describing the Mössbauer spectra of nanoparticles in a magnetic field

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory is developed for the Mössbauer absorption spectra of an ensemble of single-domain particles in a magnetic field. This theory is based on the generalization of a relaxation model with a quantummechanical description of the stationary states of a particle and on the formalism of Liouville operators for describing the hyperfine interaction for a hyperfine field changing in both the magnitude and direction for various stationary states. The general scheme of calculating relaxation Mössbauer spectra in terms of a standard stochastic approach is substantially optimized using operations with block matrices and a unique tridiagonalization of high-rank non-Hermitian matrices with a simple nonorthogonal transformation in the calculation procedure. The resulting model can easily be implemented on a personal computer. It considers the physical mechanisms of formation of a hyperfine structure in a spectrum of nanoparticles in a real situation and self-consistently describes the qualitative features of the nontrivial evolution of spectra with the temperature and the magnetic-field direction and strength, which has been detected in 57Fe nucleus experiments performed on magnetic nanoparticles for half a century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Chuev and J. Hesse, in Magnetic Properties of Solids, Ed. by K. B. Tamayo (Nova Science, New York, 2009).

    Google Scholar 

  2. H. H. Wickman, in Mössbauer Effect Methodology, Ed. by I. J. Gruverman (Plenum, New York, 1966), Vol. 2.

    Google Scholar 

  3. L. Néel, Ann. Geophys. 5, 99 (1949).

    Google Scholar 

  4. D. H. Jones, and K. K. P. Srivastava, Phys. Rev. B: Condens. Matter 34, 7542 (1986).

    Article  ADS  Google Scholar 

  5. W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).

    Article  ADS  Google Scholar 

  6. J. Hesse, H. Bremers, O. Hupe, M. Veith, E. W. Fritscher, and K. Valtchev, J. Magn. Magn. Mater. 212, 153 (2000).

    Article  ADS  Google Scholar 

  7. P. Jönsson, M. F. Hansen, and P. Nordblad, Phys. Rev. B: Condens. Matter 61, 1261 (2000).

    Article  ADS  Google Scholar 

  8. B. Rellinghaus, S. Stappert, M. Acet, and E. F. Wassermann, J. Magn. Magn. Mater. 266, 142 (2003).

    Article  ADS  Google Scholar 

  9. O. Michele, J. Hesse, H. Bremers, E. K. Polychroniadis, K. G. Efthimiadis, and H. Ahlers, J. Phys.: Condens. Matter 16, 427 (2004).

    Article  ADS  Google Scholar 

  10. J. Du, B. Zhang, R. K. Zheng, and X. X. Zhang, Phys. Rev. B: Condens. Matter 75, 014415 (2007).

    Article  ADS  Google Scholar 

  11. M. Eibschütz and S. Shtrikman, J. Appl. Phys. 39, 997 (1968).

    Article  ADS  Google Scholar 

  12. R. H. Lindquist, G. Constabaris, W. Kündig, and A. M. Portis, J. Appl. Phys. 39, 1001 (1968).

    Article  ADS  Google Scholar 

  13. L. Pfeiffer, J. Appl. Phys. 42, 1725 (1971).

    Article  ADS  Google Scholar 

  14. J. Hesse, T. Graf, M. Kopcewicz, A. Afanas’ev, and M. Chuev, Hyperfine Interact. 113, 499 (1998).

    Article  ADS  Google Scholar 

  15. S. Mørup, F. Bødker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B: Condens. Matter 52, 287 (1995).

    Article  ADS  Google Scholar 

  16. G. C. Papaefthymiou, Biochim. Biophys. Acta 1800, 886 (2010).

    Article  Google Scholar 

  17. M. A. Chuev, V. M. Cherepanov, and M. A. Polikarpov, Dokl. Phys. 55(1), 6 (2010).

    Article  ADS  Google Scholar 

  18. M. A. Chuev, V. M. Cherepanov, and M. A. Polikarpov, JETP Lett. 92(1), 21 (2010).

    Article  ADS  Google Scholar 

  19. P. V. Hendriksen, F. Bødker, S. Linderoth, S. Wells, and S. Morup, J. Phys.: Condens. Matter. 6, 3081 (1994).

    Article  ADS  Google Scholar 

  20. M. Vasquez-Mansilla, R. D. Zysler, C. Arciprete, M. I. Dimitrijewits, C. Saragovi, and J. M. Greneche, J. Magn. Magn. Mater. 204, 29 (1999).

    Article  ADS  Google Scholar 

  21. E. Tronc, A. Ezzir, R. Cherkaoui, C. Chanéac, M. Noguès, H. Kachkachi, D. Fiorani, A. M. Testa, J. M. Grenèche, and J. P. Jolivet, J. Magn. Magn. Mater. 221, 63 (2000).

    Article  ADS  Google Scholar 

  22. M. A. Chuev, JETP Lett. 87(12), 707 (2008).

    Article  ADS  Google Scholar 

  23. M. A. Chuev, J. Phys.: Condens. Matter. 20, 505201 (2008).

    Article  Google Scholar 

  24. M. A. Chuev, JETP 108(2), 249 (2009).

    Article  ADS  Google Scholar 

  25. A. M. Afanas’ev and V. E. Sedov, Sov. Phys. Dokl. 31(8), 651 (1986).

    ADS  Google Scholar 

  26. A. M. Afanas’ev and V. E. Sedov, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 2348 (1986).

    Google Scholar 

  27. M. A. Polikarpov, V. M. Cherepanov, M. A. Chuev, S. Shishkov, and S. Yakimov, J. Phys.: Conf. Ser. 217, 012114 (2010).

    Article  ADS  Google Scholar 

  28. M. A. Polikarpov, V. M. Cherepanov, M. A. Chuev, S. Yu. Shishkov, and S. S. Yakimov, J. Phys.: Conf. Ser. 217, 012115 (2010).

    Article  ADS  Google Scholar 

  29. M. A. Chuev, V. M. Cherepanov, S. M. Deyev, I. N. Mischenko, M. P. Nikitin, M. A. Polikarpov, and V. Y. Panchenko, AIP Conf. Proc. 1311, 322 (2010).

    Article  ADS  Google Scholar 

  30. N. M. K. Reid, D. P. E. Dickson, and D. H. Jones, Hyperfine Interact. 56, 1487 (1990).

    Article  ADS  Google Scholar 

  31. M. A. Chuev, O. Hupe, A. M. Afanas’ev, H. Bremers, and J. Hesse, JETP Lett. 76(9), 558 (2002).

    Article  ADS  Google Scholar 

  32. J. van Lierop and D. H. Ryan, Phys. Rev. Lett. 85, 3021 (2000).

    Article  ADS  Google Scholar 

  33. J. van Lierop and D. H. Ryan, Phys. Rev. B: Condens. Matter 63, 064406 (2001).

    Article  ADS  Google Scholar 

  34. J. van Lierop and D. H. Ryan, Phys. Rev. B: Condens. Matter 65, 104402 (2002).

    Article  ADS  Google Scholar 

  35. R. D. Desautels, J. M. Cadogan, and J. van Lierop, J. Appl. Phys. 105, 07B506 (2009).

    Article  Google Scholar 

  36. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948).

    Article  ADS  MATH  Google Scholar 

  37. M. A. Chuev, JETP Lett. 83(12), 572 (2006).

    Article  Google Scholar 

  38. A. M. Afanas’ev, M. A. Chuev, and J. Hesse, Phys. Rev. B: Condens. Matter 56, 5489 (1997).

    Article  ADS  Google Scholar 

  39. A. M. Afanas’ev, M. A. Chuev, and J. Hesse, JETP 86(5), 983 (1998).

    Article  ADS  Google Scholar 

  40. A. M. Afanas’ev, M. A. Chuev, and J. Hesse, JETP 89(3), 533 (1999).

    Article  ADS  Google Scholar 

  41. M. A. Chuev, JETP Lett. 85(12), 611 (2007).

    Article  ADS  Google Scholar 

  42. M. A. Chuev and J. Hesse, J. Phys.: Condens. Matter 19, 506201 (2007).

    Article  Google Scholar 

  43. P. W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954).

    Article  ADS  Google Scholar 

  44. R. Zwanzig, Physica (Amsterdam) 30, 1109 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  45. M. A. Chuev, JETP 103(2), 243 (2006).

    Article  ADS  Google Scholar 

  46. Yu. Kagan and A. M. Afanas’ev, Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 28, 1352 (1973).

    Google Scholar 

  47. M. A. Chuev, J. Phys.: Conf. Ser. 217, 012011 (2010).

    Article  ADS  Google Scholar 

  48. M. A. Chuev, Proc. SPIE 7521, 10P (2010).

    Google Scholar 

  49. M. A. Chuev, Bull. Russ. Acad. Sci.: Phys. 74(3), 291 (2010).

    Article  MATH  Google Scholar 

  50. A. S. Householder, J. Assoc. Comput. Mach. 5, 339 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  51. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

    Google Scholar 

  52. L. Néel, C. R. Hebd. Seances Acad. Sci. 252, 4075 (1961).

    Google Scholar 

  53. D. Gatteschi and R. Sessoli, Angew. Chem., Int. Ed. 42, 268 (2003).

    Article  Google Scholar 

  54. L. Cianchi, F. Del Giallo, G. Spina, W. Reiff, and A. Caneschi, Phys. Rev. B: Condens. Matter 65, 064415 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Chuev.

Additional information

Original Russian Text © M.A. Chuev, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 4, pp. 698–722.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuev, M.A. Multilevel relaxation model for describing the Mössbauer spectra of nanoparticles in a magnetic field. J. Exp. Theor. Phys. 114, 609–630 (2012). https://doi.org/10.1134/S1063776112020185

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112020185

Keywords

Navigation