Skip to main content
Log in

Ejection of heavy elements from the stellar core to the periphery of the cloud of ejecta during a supernova explosion: A possible model of the processes

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The possibility of simulating the processes during supernova explosions in laboratory conditions using powerful lasers (laboratory astrophysics) is investigated. The Chandra observations of ejecta in the Cassiopeia A supernova remnant are analyzed. Based on the DIANA and NUTCY numerical codes, we have performed 1D and 2D hydrodynamic simulations of the ejecta expansion dynamics for a supernova with a mass of ∼5–15 solar masses within several hundred seconds after its explosion, including an initial asymmetry. We propose a model for the explosion and expansion of ejecta that illustrates strong inhomogeneities in the distribution of material to the extent that the Fe, Si, and S material from the stellar center turns out to be ejected to the periphery, the “star turns inside out,” in agreement with observations. Based on hydrodynamic similarity criteria, we consider possible supernova-simulating laser targets that will allow one to reproduce the physical processes that take place during the explosion of an astrophysical object, such as the shock propagation through the material, the growth of hydrodynamic instabilities at the boundaries of envelopes with different densities, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Hwang and J. M. Laming, Astrophys. J. 746, 130 (2012).

    Article  ADS  Google Scholar 

  2. V. Bychkov, M. V. Popov, A. M. Oparin, L. Stenflo, and V. M. Chechetkin, Astron. Rep. 50(4), 298 (2006).

    Article  ADS  Google Scholar 

  3. N. V. Ardelyan, G. S. Bisnovatyi-Kogan, and S. G. Moiseenko, Phys.—Usp. 40 (10), 1076 (1997).

  4. K. Kifonidis T. Plewa, H.-Th. Janka, and E. Müller, Astron. Astrophys. 408, 621 (2003).

    Article  ADS  Google Scholar 

  5. S. Bouquet, in Proceedings of the 13th International Workshop on the Physics of Compressible and Turbulent Mixing (IWPCTM 13), Woburn Abbey, United Kingdom, July 16–20, 2012 (Woburn Abbey, 2012).

    Google Scholar 

  6. A. R. Miles, M. J. Edwards, and J. A. Greenough, Astrophys. Space Sci. 298, 17 (2005).

    Article  MATH  ADS  Google Scholar 

  7. D. D. Ryutov, B. A. Remington, H. F. Robey, and R. P. Drake, Phys. Plasmas 8, 1804 (2001).

    Article  ADS  Google Scholar 

  8. H. F. Robey, J. O. Kane, B. A. Remington, R. P. Drake, O. A. Hurricane, H. Louis, R. J. Wallace, J. Knauer, P. Keiter, D. Arnett, and D. D. Ryutov, Phys. Plasmas 8, 2446 (2001).

    Article  ADS  Google Scholar 

  9. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Nauka, Moscow, 1967; CRC Press, Boca Raton, Florida, United States, 1993).

    Google Scholar 

  10. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002).

    Google Scholar 

  11. S. A. Gaifulin, A. V. Zakharov, V. Ya. Karpov, et al., Vopr. At. Nauki Tekh., Ser.: Metod. Programmy Chislennogo Resheniya Zadach Mat. Fiz., No. 2 (1983).

    Google Scholar 

  12. S. Yu. Gus’kov, N. N. Demchenko, N. V. Zhidkov, N. V. Zmitrenko, D. N. Litvin, V. B. Rozanov, R. V. Stepanov, N. A. Suslov, and R. A. Yakhin, J. Exp. Theor. Phys. 111(3), 466 (2010).

    Article  ADS  Google Scholar 

  13. V. F. Tishkin, V. V. Nikishin, I. V. Popov, et al., Mat. Model. 7(5), 15 (1995).

    MATH  Google Scholar 

  14. K. V. Vyaznikov, V. F. Tishkin, and A. P. Favorskii, Mat. Model. 1(5), 95 (1989).

    MATH  MathSciNet  Google Scholar 

  15. E. L. Moses, J. Phys.: Conf. Ser., 244, 012006 (2010).

    ADS  Google Scholar 

  16. R. P. Drake, C. C. Kuranz, A. R. Miles, H. J. Muthsam, and T. Plewa, Phys. Plasmas 16, 041004 (2009).

    Article  ADS  Google Scholar 

  17. S. G. Garanin, S. A. Bel’kov, and S. V. Bondarenko, in Abstracts of Papers of the 39th Zvenigorod International Conference on Plasma Physics and Controlled Fusion, Zvenigorod, Moscow oblast, Russia, February 6–10, 2012 (Zvenigorod, 2012).

    Google Scholar 

  18. D. D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood-Vasey, Astrophys. J. 518, 821 (1999).

    Article  ADS  Google Scholar 

  19. D. D. Ryutov and B. A. Remington, Plasma Phys. Controlled Fusion 44, B407 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Rozanov.

Additional information

Original Russian Text © N.V. Zmitrenko, V.B. Rozanov, R.V. Stepanov, R.A. Yakhin, V.S. Belyaev, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 3, pp. 442–454.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zmitrenko, N.V., Rozanov, V.B., Stepanov, R.V. et al. Ejection of heavy elements from the stellar core to the periphery of the cloud of ejecta during a supernova explosion: A possible model of the processes. J. Exp. Theor. Phys. 118, 384–394 (2014). https://doi.org/10.1134/S1063776114030200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114030200

Keywords

Navigation