Skip to main content
Log in

Modification of the electronic structure and formation of an accumulation layer in ultrathin Ba/n-GaN and Ba/n-AlGaN interfaces

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electronic structure of the n-GaN(0001) and Al x Ga1 − x N(0001) (x = 0.16, 0.42) surfaces and the Ba/n-GaN and Ba/AlGaN interfaces is subjected to in situ photoemission investigations in the submonolayer Ba coverage range. The photoemission spectra of the valence band and the spectra of the surface states and the core 3d level of Ga, the 2p level of Al, and the 4d and 5p levels of Ba are studied during synchrotron excitation in the photon energy range 50–400 eV. A spectrum of the surface states in Al x Ga1 − x N (x = 0.16, 0.42) is found. The electronic structure of the surface and the near-surface region is found to undergo substantial changes during the formation of the Ba/n-GaN and Ba/AlGaN interfaces. The effect of narrowing the photoemission spectrum in the valence band region from 10 to 2 eV is detected, and surface eigenstates are suppressed. The Ba adsorption is found to induce the appearance of a new photoemission peak in the bandgap at the Fermi level in the Ba/n-GaN and Ba/n-Al0.16Ga0.84N interfaces. The nature of this peak is found to be related to the creation of an accumulation layer due to a change in the near-surface potential and enriching band bending. The energy parameters of the potential well of the accumulation layer are shown to be controlled by the Ba coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sweda, Gallium Nitride and Related Wide Bandgap Materials and Devices: A Market and Technology Overview 1998–2003, 2nd ed. (Elsevier, Oxford, United Kingdom, 2000).

    Google Scholar 

  2. P. Ruterana, M. Albrecht, and J. Neugebauer, Nitride Semiconductors: Handbook on Materials and Devices (Wiley, Weinheim, 2003).

    Book  Google Scholar 

  3. S. Heikman, S. Keller, Y. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, J. Appl. Phys. 93, 10114 (2003).

    Article  ADS  Google Scholar 

  4. K. Köhler, S. Müller, R. Aidam, P. Waltereit, W. Pletschen, and L. Kirste, J. Appl. Phys. 107, 053711 (2010).

    Article  ADS  Google Scholar 

  5. P. Lorenz, R. Gutt, T. Haensel, M. Himmerlich, J. A. Schaefer, and S. Krischok, Phys. Status Solidi C 7, 169 (2010).

    Article  ADS  Google Scholar 

  6. A. Eisenhardt, P. Lorenz, M. Himmerlich, R. Gutt, J. A. Schaefer and S. Krischok, World J. Eng. 6, 211 (2009).

    Google Scholar 

  7. S. M. Widstrand, K. O. Magnusson, L. S. O. Johansson, and M. Oshima, Surf. Sci. 584, 169 (2005).

    Article  ADS  Google Scholar 

  8. S. S. Dhesi, C. B. Stagarescu, K. E. Smith, D. Doppalapudi, R. Singh and T. D. Moustakas Phys. Rev. B: Condens. Matter 56, 10271 (1997).

    Article  ADS  Google Scholar 

  9. Y.-C. Chao, C. B. Stagarescu, J. E. Downes, P. Ryan, K. E. Smith, D. Hanser, M. D. Bremser, and R. F. Davis, Phys. Rev. B: Condens. Matter 59, R15586 (1999).

    Article  ADS  Google Scholar 

  10. T. Strasser, C. Solterbeck, F. Starrost, and W. Schattke, Phys. Rev. B: Condens. Matter 60, 11577 (1999).

    Article  ADS  Google Scholar 

  11. D. Segev and C. G. Van de Walle, J. Cryst. Growth 300, 199 (2007).

    Article  ADS  Google Scholar 

  12. F.-H. Wang, P. Krüger, and J. Pollmann, Phys. Rev. B: Condens. Matter 64, 035305 (2001).

    Article  ADS  Google Scholar 

  13. Yujie Du, Benkang Chang, Xiaohui Wang, Junju Zhang, Biao Li, and Meishan Wang, Appl. Surf. Sci. 258, 7425 (2012).

    Article  ADS  Google Scholar 

  14. R. Z. Bakhtizin, Q. Xue, Q. Xue, K. Wu, and T. Sakurai, Phys.—Usp. 47(4), 371 (2004).

    Article  ADS  Google Scholar 

  15. K. Rapcewicz, M. B. Nardelli, and J. Bernholc, Phys. Rev. B: Condens. Matter 56, R12725 (1997).

    Article  ADS  Google Scholar 

  16. A. Rizzi, M. Kocan, J. Malindretos, A. Schildknecht, N. Teofilov, K. Thonke, and R. Sauer, Appl. Phys. A: Mater. Sci. Process. 87, 505 (2007).

    Article  ADS  Google Scholar 

  17. T. Kozava, T. Mori, T. Ohwaki, Y. Taga, and N. Sawaki, Jpn. J. Appl. Phys. 39, L772 (2000).

    Article  ADS  Google Scholar 

  18. M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan, J. Appl. Phys. 88, 6476 (2000).

    Article  ADS  Google Scholar 

  19. F. Bechsted and M. Scheffler, Surf. Sci. Rep. 18, 148 (1993).

    ADS  Google Scholar 

  20. C. I. Wu and A. Kahn, J. Appl. Phys. 86, 3209 (1999); C. I. Wu and A. Kahn, Appl. Surf. Sci. 162–163, 250 (2000).

    Article  ADS  Google Scholar 

  21. M. Eyckeler, W. Mönch, T. U. Kampen, R. Dimitrov, O. Ambacher, and M. Stutzmann, J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 16, 2224 (1998).

    Article  ADS  Google Scholar 

  22. C. I. Wu, A. Kahn, N. Taskar, D. Dorman, and D. Gallagher, J. Appl. Phys. 83, 4249 (1998).

    Article  ADS  Google Scholar 

  23. L.Ö. Olsson, C. B. M. Andersson, M. C. Håkansson, J. Kanski, L. Ilver, and U. O. Karlsson, Phys. Rev. Lett. 76, 3626 (1996).

    Article  ADS  Google Scholar 

  24. L. Colakerol, T. D. Veal, H.-K. Jeong, L. Plucinski, A. DeMasi, T. Learmonth, P.-A. Glans, S. Wang, Y. Zhang, L. F. J. Piper, P. H. Jefferson, A. Fedorov, T.-C. Chen, T. D. Moustakas, C. F. McConville, and K. E. Smith, Phys. Rev. Lett. 97, 237601 (2006).

    Article  ADS  Google Scholar 

  25. K. Szamota-Leandersson, M. Göthelid, M. Leanders- son, and U. O. Karlsson, Appl. Surf. Sci. 252, 5267 (2006).

    Article  ADS  Google Scholar 

  26. M. G. Betti, V. Corradini, G. Bertoni, P. Casarini, C. Mariani, and A. Abramo, Phys. Rev. B: Condens. Matter 63, 155315 (2001).

    Article  ADS  Google Scholar 

  27. G. V. Benemanskaya, V. S. Vikhnin, N. M. Shmidt, G. E. Frank-Kamenetskaya, and I. V. Afanasiev, Appl. Phys. Lett. 85, 1365 (2004).

    Article  ADS  Google Scholar 

  28. G. V. Benemanskaya, M. N. Lapushkin, and S. N. Timoshnev, Surf. Sci. 603, 2474 (2009).

    Article  ADS  Google Scholar 

  29. G. V. Benemanskaya, G. E. Frank-Kamenetskaya, N. M. Shmidt, and M. S. Dunaevskii, J. Exp. Theor. Phys. 103(3), 441 (2006).

    Article  ADS  Google Scholar 

  30. G. V. Benemanskaya and G. E. Frank-Kamenetskaya, JETP Lett. 81(10), 519 (2005).

    Article  ADS  Google Scholar 

  31. G. V. Benemanskaya, S. V. Ivanov, and M. N. Lapushkin, Solid State Commun. 143, 476 (2007).

    Article  ADS  Google Scholar 

  32. G. V. Benemanskaya, V. N. Zhmerik, M. N. Lapushkin, and S. N. Timoshnev, JETP Lett. 91(12), 670 (2010).

    Article  ADS  Google Scholar 

  33. V. N. Jmerik, T. V. Shubina, A. M. Mizerov, K. G. Belyaev, A. V. Sakharov, M. V. Zamoryanskaya, A. A. Sitnikova, V. Yu. Davydov, P. S. Kop’ev, E. V. Lutsenko, N. V. Rzheuttskii, A. V. Danilchik, G. P. Yablonskii, and S. V. Ivanov, J. Cryst. Growth 311, 2080 (2009).

    Article  ADS  Google Scholar 

  34. V. M. Bermudez, J. Appl. Phys. 80, 1190 (1996).

    Article  ADS  Google Scholar 

  35. T. Okuda, K.-S. An, A. Harasava, and T. Kinoshita, Phys. Rev. B: Condens. Matter 71, 085317 (2005).

    Article  ADS  Google Scholar 

  36. T.-W. Pi, I.-H. Hong, and C.-P. Cheng, Phys. Rev. B: Condens. Matter 58, 4149 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Benemanskaya.

Additional information

Original Russian Text © G.V. Benemanskaya, S.N. Timoshnev, S.V. Ivanov, G.E. Frank-Kamenetskaya, D.E. Marchenko, G.N. Iluridze, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 4, pp. 684–696.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benemanskaya, G.V., Timoshnev, S.N., Ivanov, S.V. et al. Modification of the electronic structure and formation of an accumulation layer in ultrathin Ba/n-GaN and Ba/n-AlGaN interfaces. J. Exp. Theor. Phys. 118, 600–610 (2014). https://doi.org/10.1134/S1063776114040098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114040098

Keywords

Navigation