Skip to main content
Log in

Phonon focusing and temperature dependences of thermal conductivity of silicon nanofilms

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of phonon focusing on the anisotropy and temperature dependences of the thermal conductivities of silicon nanofilms is analyzed using the three-mode Callaway model. The orientations of the film planes and the directions of the heat flux for maximal or minimal heat removal from silicon chip elements at low temperatures, as well as at room temperature, are determined. It is shown that in the case of diffuse reflection of phonons from the boundaries, the plane with the {100} orientation exhibits the lowest scattering ability (and the highest thermal conductivity), while the plane with the {111} orientation is characterized by the highest scattering ability (and the lowest thermal conductivity). The thermal conductivity of wide films is determined to a considerable extent by the orientation of the film plane, while for nanowires with a square cross section, the thermal conductivity is mainly determined by the direction of the heat flux. The effect of elastic energy anisotropy on the dependences of the thermal conductivity on the geometrical parameters of films is analyzed. The temperatures of transition from boundary scattering to bulk relaxation mechanisms are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).

    Article  ADS  Google Scholar 

  2. A. D. McConnell and K. E. Goodson, Annu. Rev. Heat Transfer 14, 128 (2005).

    Article  Google Scholar 

  3. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, J. Appl. Phys. Rev. 1, 011305 (2014).

    Article  ADS  Google Scholar 

  4. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar. Appl. Phys. Lett. 83, 2934 (2003).

    Article  ADS  Google Scholar 

  5. M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, Appl. Phys. Lett. 71, 1798 (1997); M. Asheghi, M.N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, J. Heat Transfer 120, 30 (1998).

    Article  ADS  Google Scholar 

  6. W. Liu and M. Asheghi, Appl. Phys. Lett. 84, 3819 (2004).

    Article  ADS  Google Scholar 

  7. I. G. Kuleyev, I. I. Kuleyev, and S. M. Bakharev, J. Exp. Theor. Phys. 118(2), 253 (2014).

    Article  ADS  Google Scholar 

  8. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. Solid State 55(1), 31 (2013).

    Article  ADS  Google Scholar 

  9. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Physica B (Amsterdam) 416, 81 (2013).

    Article  ADS  Google Scholar 

  10. H. B. G. Casimir, Physica (Amsterdam) 5, 495 (1938).

    Article  ADS  Google Scholar 

  11. A. K. McCurdy, H. J. Maris, and C. Erlbaum, Phys. Rev. B: Solid State 2, 4077 (1970).

    Article  ADS  Google Scholar 

  12. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. Status Solidi B 251, 991 (2014).

    Article  ADS  Google Scholar 

  13. B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 23, 416 (1969).

    Article  ADS  Google Scholar 

  14. H. J. Maris, J. Acoust. Soc. Am. 50, 812 (1971).

    Article  ADS  Google Scholar 

  15. J. P. Wolfe, Imaging Phonons Acoustic Wave Propagation in Solids (Cambridge University Press, New York, 1998).

    Book  Google Scholar 

  16. H. J. Maris and S. Tamura, Phys. Rev. B: Condens. Matter 85, 054304 (2012).

    Article  ADS  Google Scholar 

  17. Y. F. Zhu, J. S. Lian, and Q. Jiang, Appl. Phys. Lett. 92, 113101 (2008).

    Article  ADS  Google Scholar 

  18. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  ADS  MATH  Google Scholar 

  19. J. A. Krumhansl, Proc. Phys. Soc. 85, 921 (1965).

    Article  ADS  Google Scholar 

  20. I. G. Kuleev and I. I. Kuleev, J. Exp. Theor. Phys. 93(3), 568 (2001); I. G. Kuleev and I. I. Kuleev, J. Exp. Theor. Phys. 95 (3), 480 (2002).

    Article  ADS  Google Scholar 

  21. V. L. Gurevich, Kinetics of Phonon Systems (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  22. R. Berman, Thermal Conduction (Oxford University Press, Oxford, 1976; Mir, Moscow, 1979).

    Google Scholar 

  23. B. M. Mogilevskii and A. F. Chudnovskii, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  24. G. Nilson and G. Nelin, Phys. Rev. B: Solid State 6, 3777 (1972).

    Article  ADS  Google Scholar 

  25. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. Solid State 55(7), 1545 (2013).

    Article  ADS  Google Scholar 

  26. S. Tamura, Phys. Rev. B: Condens. Matter 27, 858 (1983).

    Article  ADS  Google Scholar 

  27. I. G. Kuleev and I. I. Kuleev, Phys. Solid State 49(9), 1643 (2007).

    Article  ADS  Google Scholar 

  28. A. P. Zhernov and A. V. Inyushkin, Phys.-Usp. 44(8), 785 (2001); A. P. Zhernov and A. V. Inyushkin, Phys.-Usp. 45 (5), 527 (2002).

    Article  ADS  Google Scholar 

  29. C. Herring, Phys. Rev. 95, 954 (1954).

    Article  ADS  MATH  Google Scholar 

  30. L. Landau and J. Rumer, Phys. Z. Sowjetunion 11, 18 (1937).

    MATH  Google Scholar 

  31. R. Berman, F. E. Simon, and J. M. Ziman, Proc. R. Soc. London, Ser. A 220, 171 (1953); R. Berman, E. L. Foster, and J. M. Ziman, Proc. R. Soc. London, Ser. A 231, 130 (1955).

    Article  ADS  Google Scholar 

  32. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960).

    MATH  Google Scholar 

  33. Handbook of Semiconductor Silicon Technology, Ed. by W. C. O’Mara, R. B. Herring, and L. P. Hunt (Noyes, Park Ridge, 1990), p. 349.

    Google Scholar 

  34. Z. Aksamija and I. Knezevic, Phys. Rev. B: Condens. Matter 82, 045319 (2010).

    Article  ADS  Google Scholar 

  35. J. E. Turney, A. J. H. McGaughey, and C. H. Amon, J. Appl. Phys. 107, 024317 (2010).

    Article  ADS  Google Scholar 

  36. K. Fuchs, Proc. Cambr. Philos. Soc. 34, 100 (1938).

    Article  ADS  Google Scholar 

  37. E. H. Sondheimer, Adv. Phys. 1, 1 (1952).

    Article  ADS  Google Scholar 

  38. S. B. Soffer, J. Appl. Phys. 38, 1710 (1967).

    Article  ADS  Google Scholar 

  39. M. P. Zaitlin, L. M. Scherr, and A. C. Anderson, Phys. Rev. B: Solid State 12, 4487 (1975).

    Article  ADS  Google Scholar 

  40. I. I. Kuleyev, I. G. Kuleyev, and S. M. Bakharev, J. Exp. Theor. Phys. 119(3), 460 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Kuleyev.

Additional information

Original Russian Text © I.I. Kuleyev, S.M. Bakharev, I.G. Kuleyev, V.V. Ustinov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 4, pp. 736–749.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleyev, I.I., Bakharev, S.M., Kuleyev, I.G. et al. Phonon focusing and temperature dependences of thermal conductivity of silicon nanofilms. J. Exp. Theor. Phys. 120, 638–650 (2015). https://doi.org/10.1134/S1063776115020144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115020144

Keywords

Navigation