Skip to main content
Log in

Peculiarities of the nonlinear absorption of colloidal solutions of CdSe/ZnS quantum dots under stationary single-photon excitation of excitons

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Peculiarities of the nonlinear absorption of a colloidal solution of CdSe/ZnS quantum dots with various sizes under resonant stationary excitation of the ground electron–hole (exciton) transition have been revealed by the pump and probe technique. The detected peculiarities of the nonlinear change in absorption are explained by the coexistence and competition of the effects of state filling and charge-induced Stark and temperature long-wavelength shift of the absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Shi, V. De Paoli, N. Rosenzweig, et al., J. Am. Chem. Soc. 128, 10378 (2006).

    Article  Google Scholar 

  2. C. Y. Zhang, H. C. Yeh, M. T. Kuroki, et al., Nat. Mater. 4, 826 (2005).

    Article  ADS  Google Scholar 

  3. Q. Sun, Y. A. Wang, L. S. Li, et al., Nat. Photon. 1, 717 (2007).

    Article  ADS  Google Scholar 

  4. H. S. Jang, H. Yang, S. W. Kim, et al., Adv. Mater. 20, 2696 (2008).

    Article  Google Scholar 

  5. J. M. Caruge, J. E. Halpert, V. Wood, et al., Nat. Photon. 2, 247 (2008).

    Article  Google Scholar 

  6. Z. Luo, H. Chen, Y. Liu, et al., Appl. Opt. 54, 2845 (2015).

    Article  ADS  Google Scholar 

  7. V. I. Klimov, A. A. Mikhailovsky, S. Xu, et al., Science 290, 314 (2000).

    Article  ADS  Google Scholar 

  8. J. I. Saari, M. M. Krause, B. R. Walsh, et al., Science 13, 722 (2013).

    Google Scholar 

  9. I. Gur, N. A. Fromer, M. L. Geier, et al., Science 310, 462 (2005).

    Article  ADS  Google Scholar 

  10. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, et al., Nano Lett. 7, 3065 (2007).

    Article  ADS  Google Scholar 

  11. M. Bruchez, M. Moronne, P. Gin, et al., Science 281, 2013 (1998).

    Article  ADS  Google Scholar 

  12. W. C. Chan and S. Nie, Science 281, 2016 (1998).

    Article  ADS  Google Scholar 

  13. V. Dneprovskii, D. Kabanin, V. Lyaskovskii, et al., Phys. Status Solidi C 5, 2503 (2008).

    Article  ADS  Google Scholar 

  14. V. S. Dneprovskii, M. V. Kozlova, and A. M. Smirnov, Quantum Electron. 43, 927 (2013).

    Article  ADS  Google Scholar 

  15. V. I. Klimov, S. A. Ivanov, J. Nanda, et al., Nature 447, 441 (2007).

    Article  ADS  Google Scholar 

  16. O. Labeau, P. Tamarat, and B. Lounis, Phys. Rev. Lett. 90, 257404 (2003).

    Article  ADS  Google Scholar 

  17. V. S. Dneprovskii, E. A. Zhukov, O. A. Shalygina, V. P. Evtikhiev, and V. P. Kochereshko, J. Exp. Theor. Phys. 98, 156 (2004).

    Article  ADS  Google Scholar 

  18. S. Hunsche, T. Dekorsy, V. Klimov, et al., Appl. Phys. B 62, 3 (1996).

    Article  ADS  Google Scholar 

  19. V. I. Klimov, J. Phys. Chem. B 104, 6112 (2000).

    Article  Google Scholar 

  20. S. Mathew, A. D. Saran, B. S. Bhardwaj, et al., J. Appl. Phys. 111, 074312 (2012).

    Article  ADS  Google Scholar 

  21. H. M. Gibbs, G. Khitrova, and N. Peyghambarian, Nonlinear Photonics (Springer, Berlin, 1990).

    Book  Google Scholar 

  22. Yu. V. Vandyshev, V. S. Dneprovskii, A. I. Ekimov, et al., JETP Lett. 46, 495 (1987).

    ADS  Google Scholar 

  23. D. Norris, A. Sacra, C. Murray, et al., Phys. Rev. Lett. 72, 2612 (1994).

    Article  ADS  Google Scholar 

  24. M. Bawendi, P. Carrol, W. Wilson, et al., J. Chem. Phys. 96, 946 (1990).

    Article  ADS  Google Scholar 

  25. V. Dneprovskii, M. Kozlova, A. Smirnov, et al., Physica E 44, 1920 (2012).

    Article  ADS  Google Scholar 

  26. D. Feng, D. R. Yakovlev, V. V. Pavlov, et al., Nano Lett. 17, 2844 (2017).

    Article  ADS  Google Scholar 

  27. H. Zang, M. Cristea, X. Shen, et al., Nanoscale 7, 14897 (2015).

    Article  ADS  Google Scholar 

  28. D. L. Woodall, A. K. Tobias, and M. Jones, Chem. Phys. 471, 2 (2016).

    Article  ADS  Google Scholar 

  29. Yu. V. Vandyshev, V. S. Dneprovskii, and V. I. Klimov, Sov. Phys. JETP 74, 144 (1992).

    Google Scholar 

  30. M. Kuno, D. P. Fromm, H. F. Hamann, et al., J. Chem. Phys. 112, 3117 (2000).

    Article  ADS  Google Scholar 

  31. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, et al., Nature 383, 802 (1996).

    Article  ADS  Google Scholar 

  32. S. A. Empedocles and M. G. Bawendi, Science Z 278, 2114 (1997).

    Article  ADS  Google Scholar 

  33. O. Svelto and D. C. Hanna, Principles of Lasers (Springer, New York, 2010).

    Book  Google Scholar 

  34. N. Ha, T. Mano, Y.-L. Chou, et al., Phys. Rev. B 92, 075306 (2016).

    Article  ADS  Google Scholar 

  35. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Sci., Harrow, UK, 2005).

    Google Scholar 

  36. K. S. Shifrin, Light Scattering in a Turbid Media (Gostekhizdat, Moscow, 1951) [in Russian].

    Google Scholar 

  37. U. Bockelmann and T. Egeler, Phys. Rev. B 46, 15574 (1992).

    Article  ADS  Google Scholar 

  38. V. I. Klimov, P. Haring-Bolivar, H. Kurz, et al., Superlatt. Microstruct. 20, 395 (1996).

    Article  ADS  Google Scholar 

  39. P. Horan and W. Blau, J. Opt. Soc. Am. B 7, 304 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Smirnov.

Additional information

Original Russian Text © A.M. Smirnov, A.D. Golinskaya, K.V. Ezhova, M.V. Kozlova, V.N. Mantsevich, V.S. Dneprovskii, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 5, pp. 1046–1052.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.M., Golinskaya, A.D., Ezhova, K.V. et al. Peculiarities of the nonlinear absorption of colloidal solutions of CdSe/ZnS quantum dots under stationary single-photon excitation of excitons. J. Exp. Theor. Phys. 125, 890–895 (2017). https://doi.org/10.1134/S1063776117110127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117110127

Navigation